60482700

@ CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1 GUIDE FOR USERS OF
FORTRAN EXTENDED VERSION 4

CDC®OPERATING SYSTEMS:
NOS 1
NOS/BE 1

REVISION RECORD

REVISION DESCRIPTION _|
_ =i = =
A Original release at PSR level 472.
(2-1-79)

Publication No.
60482700

REVISION LETTERS I, O, Q AND X ARE NOT USED

© 1979

Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. BOX 3492 ’
SUNNYVALE, CALIFORNIA 94088-3492 .

or use Comment Sheet in the

back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page Revision Page Revision Page Revision

Cover

Title Page

ii

ii/iv

v/vi

1-1 thru 14
2-1 thru 2-11
3-1 thru 3-31
4-1 thru 4-10
5-1 thru 5-23
6-1 thru 6-5
A-1 thru A-3
B-1

B-2

C-1 thru C-3
D-1 thru D-3
E-1

E-2

Index-1
Index-2
Comment Sheet
Mailer

Back Cover

e S S S S A A A A A

60482700 A idifiv

PREFACE

This manual is intended to provide the FORTRAN
programmer with assistance in the debugging of
FORTRAN Extended programs under the control of the
CDC®CYBER Interactive Debug Facility.

CYBER Interactive Debug (CID) operates under the
following operating systems: .

NOS/BE1 for the CONTROL DATA® CYBER 170
Series; CYBER 70 Models 71, 72, 73, 74; and 6000
Series Computer Systems.

NOS1 for the CDC® CYBER 170 Models 171, 172,
173, 174, 175; CYBER 70 Models 71, 72, 73, 74; and
6000 Series Computer Systems.

Publication

CYBER Interactive Debug Version 1
Reference Manual

FORTRAN Extended Version 4
Reference Manual

INTERCOM Guide for Users
of FORTRAN Extended 4

NOS Time-Sharing User's Guide

You should have a copy of the CYBER Interactive Debug
reference manual available for reference, but you need
not be familiar with the manual. In addition, you should
be familiar with FORTRAN Extended and should be able
to run jobs interactively under either NOS/BE INTERCOM
or the NOS Time-Sharing System.

This manual provides a tutorial approach to CID beginning

~with basic features and proceeding through more advanced

features. It is not comprehensive in its approach to CID;
only those features considered useful to FORTRAN
programmers are discussed. Most of the features
discussed in this manual are illustrated by actual examples
of debug sessions. This is intended to help you become
familiar with CID notational conventions and with
information produced by CID.

Additional information can be found in the publications
listed below.

Publication Number

60481400

60497800

60495000

60436400

CDC manuals can be ordered from Control Data Corporation
Literature and Distribution Services, 8001 East Bloomington

Freeway, Minneapolis, MN 55420.

This product is intended for use only as described
in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or

parameters.

60482700 A

v/vi

£

1. INTRODUCTION

What is Interactive Debugging?
Description of a Debug Session
Special FORTRAN Extended Features
Why Use CID
Common Programming Errors

Indexing

Subprogram Calls

Initialization

Arithmetic Errors

Floating Point Errors

Input Checking
Programming for Ease of Debugging

What Effect Does CID Have On Program Size

and Execution Time?
Overlay Debugging
Batch Mode Debugging
The FORTRAN Extended Debugging Facility

2. GETTING STARTED

Entering the Debug Environment
DEBUG Control Statement
DB Parameter
Executing Under CID Control
Entering CID Commands
Command Formats
Shorthand Notation
Some Essential Commands
GO Command
QUIT Command
PRINT Command
Sample Debug Session
Program Listings
Program Address Notation
Home Program
Specifying a Single Address
Variable Name
Source Line Number
Statement Label
Specifying an Address Range
Program Unit Specification
Common Block Specification
Ellipsis Notation
Array Specification
Referencing Addresses Outside the Home
Program
Address Qualifiers
SET,HOME Command
Connected Files

3. INTERACTIVE DEBUGGING

Traps and Breakpoints

Suspending Program Execution With Breakpoints

SET,BREAKPOINT Command
Removing Breakpoints
Suspending Program Execution With Traps
A Note on Traps
Default Traps
INTERRUPT Trap
END Trap
ABORT Trap

60482700 A

CONTENTS

1-1

| L L]
-

1
WWMWWWWWNNRN -

IS

L
ARV RV

NNNNNNNN'?)NNNNNNNN

N

2-6
2-6
2-7
2-8
2-8

2-8
2-8
2-9
2-9

3-1
3-1
3-1
3-2
3-4
3-4
3-4
3-4
3-5
3-5

User-Established Traps
SET,TRAP Command
LINE Trap
STORE and FETCH Traps
JUMP Trap
RJ Trap
Removing Traps
Interpret Mode -

Summary of Trap and Breakpoint Characteristics
" Displaying Program Variables

LIST,VALUES Command

PRINT Command

DISPLAY Command
Altering Program Values

Assignment Command

Conditional Execution of Assignment

Commands

MOVE Command
Debugging Examples

Sample Program CORR

Sample Program NEWT

4. DISPLAYING DEBUG INFORMATION

Debug Variables

Error and Warning Processing
Error Messages
Warning Messages

LIST Commands
LIST,BREAKPOINT Command
LIST,TRAP Command
LIST,GROUP Command
LIST,MAP Command
LIST,STATUS Command

HELP Command

TRACEBACK Command

Control of CID Output
Types of Output
SET,OUTPUT Command
SET,AUXILIARY Command

5. AUTOMATIC EXECUTION OF CID
COMMANDS

Command Sequences
Collect Mode
Sequence Commands
Traps and Breakpoints With Bodies
Groups
Error Processing During Sequence Execution
Receiving Control During Sequence Execution
PAUSE Command
GO and EXECUTE Commands
Conditional Execution of CID Commands
IF Command
JUMP and LABEL Commands
Command Files
Saving Trap, Breakpoint, and Group Definitions
Editing a Command Sequence
Suspending a Debug Session

3-6
3-6
3-6
3-6
3-8
3-9
3-11
3-12
3-13
3-14
3-14
3-15
3-15
3-16
3-16

3-19
3-20
3-20
3-20
3-26

o
1
[

1

" L]
BB WWWN

bbf‘bbbf‘k##—‘#bb
[e W W« RV, RV,]

wn
!
—

AR R
-

LA o A b il A AR A A
Pt s bt et bt s N N S NN b
AP WNNOO

1
b

vii

Editing Trap Bodies, Breakpoint Bodies,
and Groups
Veto Mode
Displaying Command Sequences as They Execute
Interrupts During Sequence Execution
Examples of Debug Sessions Using Command
Sequences
Program CORR
Program NEWT

A. Standard Character Sets
B. Glossary
C. Arithmetic Errors

2-1 Initiating a Debug Session

2-2 Sample Program and Debug Session

2-3 Program and Subroutine Illustrating
Local Variables

2-4 Debug Session Illustrating Local
Variables

2-5 Program Listings for Use With CID

2-6 Debug Session Illustrating SET,HOME
Command

2-7 Program ATR and Debug Session Illustrating
Connected Files (NOug

2-8 Program ATR and Debug Session Illustrating
Connected Files (NOS/BE)

3-1 Subroutine AREA, Main Program, and
Input File

3-2 Debug Session Illustrating
SET,BREAKPOINT Command

3-3 Program COMPC and Debug Session
Ilustrating ABORT Trap

3-4 Subroutine SETB and Main Program

3-5 Debug Session lllustrating LINE Trap

3-6 Debug Session Illustrating STORE and
FETCH Traps

3-7 Program TESTJ and Debug Session
Illustrating JUMP Trap

3-8 Debug Session Illustrating RJ Trap

3-9 Debug Session Illustrating CLEAR,TRAP
Command

3-10 Debug Session Illustrating SET,INTERPRET
Command

3-11 Debug Session Illustrating LIST,VALUES
Command

3-12 Debug Session Illustrating PRINT Command

3-13 Program CHAR, Input File, and Debug
Session Illustrating DISPLAY Command

3-14 Program PAK and Debug Session Illustrating
DISPLAY Command

3-15 Program AVG and Debug Sessions
Illustrating Assignment Command

3-16 Program CORR Before Debugging

3-17 Input Data for First Test Case and Debug
Session

3-18 Second Debug Session

3-19 Third Debug Session

3-20 Fourth Debug Session

3-21 Input Data for Second Test Case and Debug
Session

3-22 Input Data for Third Test Case and Debug
Session

3-23 Input Data for Fourth Test Case and Debug
Session

viii

5-16
5-18
5-20 Summary of Overlay Processing
5-20 Address Qualification
Referencing Addresses in Unloaded Overlays
5-20 OVERLAY Trap
5-20 Special Forms of Some CID Commands
5-21 Overlay Example
APPENDIXES
A-1 D. Batch Mode Debugging
B-1 E. Summary of CID Commands
C-1
FIGURES
2-2 3-24 Program CORR With Corrections
2-4 3-25 Subroutine NEWT and Main Program
Before Debugging
2-4 3-26 Debug Session for Subroutine NEWT
3-27 Subroutine NEWT and Main Program With
2-6 Corrections
2-7 4-1 Debug Session Hlustrating Debug
Variables
2-9 4-2 Partial Debug Session Illustrating Error
Messages
2-10 4-3 Partial Debug Session lllustratmg Warning
Messages
2-11 4-4 Partial Debug Session Illustratmg
LIST,BREAKPOINT Command
3.2 4-5 Partial Debug Session Illustrating
LIST,TRAP Command
3-3 4-6 Program ABLE and Debug Session
INustrating LIST,MAP Command
3-5 4-7 Partial Debug Session Illustrating
3-7 LIST,STATUS Command
3-8 4-8 Partial Debug Session Illustrating HELP
Command
3-9 4-9 Debug Session Illustrating TRACEBACK
Command
3-10 4-10 Debug Session Illustrating SET,AUXILIARY,
3-11 SET,0UTPUT and CLEAR, OUTPUT
Commands
3-12 4-11 Listing of Auxiliary File AFILE
5-1 Debug Session Illustrating Breakpoint
3-13 With Body
5-2 Debug Session Illustrating Group Executlon
3-14 Initiated at the Terminal
3-15 5-3 Debug Session Illustrating Group Execution
Initiated From Breakpoint Body
3-17 5-4 Program MATOP and Debug Session
Illustrating Command Group Execution
3-18 5-5 Debug Session Illustrating READ Command
Entered at the Terminal
3-19 5-6 Debug Session Illustrating Error Processing
3-21 During Sequence Execution
5-7 Debug Session Illustrating PAUSE Command
3-22 5-8 Program EX and Debug Session Illustrating
3-22 GO Command
3-23 5-9 Debug Session Illustrating JUMP and
3-23 LABEL Commands
5-10 Debug Sessions Illustrating SAVE Command
3-25 5-11 Listing of Breakpoint File AFILE
5-12 Debug Session Illustrating READ and
3-26 SAVE,GROUP Commands
5-13 Editing a Command Sequence Using
3-26 EDITOR Under NOS/BE INTERCOM

6. DEBUGGING IN AN OVERLAY ENVIRONMENT 6-1

D-1
E-1

3-27

3-28
3-29

3-31
4-1

4-3
44
4-4
4-5
4-6
4-7
4.7
4-9
4-10
5-3
5-4
5-5
5-6

5-9
5-10

5-11
5-13
5-15
5-16
5-17

5-18

60482700 A

5-14 Editing a Command Sequence Using the
EDIT Program Under NOS

5-15 Debug Session Illustrating Veto Mode

5-16 Command Files Initializing Input Variables
for Program CORR :

5-17 Listing of File BPFILE Containing Breakpoin
Definitions

2-1 Address Notation

2-2 Address Range Specification

3-1 Options for CLEAR,BREAKPOINT Command
3-2 Trap Types

3-3 Display Commands

4-1 Debug Variables

60482700 A

5-18 Debug Session Using Command Sequence

5-19 for Debugging Program CORR
5-20 5-19 Debug Session Using Command Sequence
for Debugging Subroutine NEWT

5-21 6-1 Sample Program Illustrating Overlays
6-2 Debug Session Illustrating Overlay

5-21 Debugging (NOS/BE)

TABLES

2-4 4-2 LIST Commands

2-5 4-3 CID Output types

3-3 5-1 Sequence Commands

3-4 6-1 Special Forms of CID Commands

3-14 for Overlay Programs .

4-1

5-22

5-23
6-1

ix

INTRODUCTION | 1

e R e

The CYBER Interactive CID Facility (CID) provides you
with the capability of interactively debugging an
executing object program. CID can be used with
FORTRAN Extended programs compiled under the NOS or
NOS/BE operating systems.

Debug mode is established by means of a control
statement. As long as debug mode is in effect, execution
of all user programs takes place under control of CID.
CID, in turn, allows you to enter commands that perform
the following operations:

o Suspend program execution at specified locations.

e Suspend program execution on the occurrence of

selected conditions, such as modification of a
variable.

e Display the contents of variables, arrays, and
common blocks while execution is suspended.

e Change the contents of variables, arrays, or common
blocks within the program while execution is
suspended.

e Resume program execution at the location where it
was suspended or at another location.

WHAT IS INTERACTIVE DEBUGGING?

Interactive debugging means that you debug your program
while it is executing. In interactive mode, CID allows you
to suspend execution of your program and enter commands
directly from a terminal while execution is suspended.
CID executes each command immediately after it is
entered. Program execution remains suspended until
resumed by the appropriate command. In this manner, you
can control and monitor the execution of your program,
stopping at desired points to examine and modify the
values of program variables.

DESCRIPTION OF A DEBUG SESSION

A significant characteristic of CID is that much of its
power exists in a few commands. It is not necessary to
have a complete knowledge of all the CID commands to
take advantage of the most powerful features of CID.

Following is a step-by-step summary of a basic debug
session that should provide a useful debugging tool. The
commands and terms used in this summary are discussed
in greater detail in sections 2 through 6.

To use CID:

1. Type DEBUG to turn on debug mode.

2. Compile and load your program normally. Control

transfers to CID when execution begins. CID displays
a message at the terminal and waits for your input.

60482700 A

3. Set traps and breakpoints as desired.

To set a breakpoint at a line number or statement
label enter:

SET,BREAKPOINT,P.name_L.n
SET,BREAKPOINT,P.name_S.n

where name is a main program, subroutine, or
function- name and n is a line number or statement
label.

To set a STORE trap enter:
SET,TRAP,STORE,P.name_variable

where name is the name of the program unit
containing the specified variable. This trap suspends
program execution whenever the specified variable is
modified.

4. To begin execution of your program enter GO.

5. CID executes your program normally, but returns
control to you when a trap or breakpoint occurs.

At this point you can display the values of program
variables with the statements:

PRINT#*,variable list
DISPLAY,P.name_variable

You can remove existing traps or breakpoints with
the commands:

CLEAR,BREAKPOINT,P.name_L.n

CLEAR,BREAKPOINT,P.name_S.n
CLEAR,TRAP,STORE

To resume execution enter GO.

6. To terminate the session enter QUIT. To turn off
debug mode enter DEBUG(OFF).

SPECIAL FORTRAN EXTENDED FEATURES

CID provides certain features currently available only to
FORTRAN Extended programs compiled in debug mode.
These features include commands with a FORTRAN-like
syntax and the capability of referencing locations within
an object program by statement label, line number, or
variable name. The commands available only in debug
mode are indicated in appendix E.

For purposes of this user's guide, it is assumed that a
FORTRAN program to be executed under CID control will
be compiled in debug mode; therefore, no distinction is
made between standard features and the special
FORTRAN features in the discussions of the CID
capabilities.

1-1

WHY USE CID

Conventional debugging techniques often require the use
of load maps, object listings, and octal dumps. In
addition, it is often necessary to recompile a FORTRAN
program several times to make corrections or to add
statements that print intermediate values of program
variables. These debugging techniques can be expensive in
terms of both machine time and programmer time.

CID, however, requires only a source listing. CID
commands allow you to debug your program directly from
the source listing, referencing variables and line numbers
symbolically. In many cases a FORTRAN program need
be compiled only once; the resulting object program can
be executed repeatedly with different CID commands
specified for each run. Since CID allows you to make
changes to your program's data and control flow as
execution proceeds, you can often accomplish in a single
session debugging that would normally require several
compilations. Thus, considerable time savings can be
realized, especially when debugging programs that are
time-consuming to compile or execute.

A disadvantage of CID is that TS compilation mode is
required.if the special FORTRAN commands and symbolic
capabilities are to be used. Since a program that executes
correctly when compiled in TS mode might not do so when
compiled in a higher mode of optimization, a program
tested in TS mode should also be tested with OPT=1 or
OPT=2. If the program does not execute correctly in
optimizing mode, then you must either use conventional
debugging techniques or use CID without the FORTRAN
capabilities.

COMMON PROGRAMMING ERRORS

The following paragraphs describe some of the common
mistakes committed by FORTRAN programmers. These
errors often lead to execution time errors called mode
errors that result in abnormal termination of execution.
CID has a feature that transfers control to CID when
abnormal termination occurs, allowing you to enter
commands to determine the cause of the error. Mode
errors are discussed in appendix C.

INDEXING

A frequent source of execution time errors is faulty
indexing, especially when the indexing occurs within a DO
loop. This usually involves a subscript that exceeds the
dimensioned boundary of an array. Incorrect indexing can
cause the program to reference inaccessible locations,
which can have unpredictable effects on program
execution. If an illegal index results in a reference to a
location outside the program's field length, a mode !
(address out of range) error occurs. If the reference is
within the program’s field length it can result in the
overstoring of data or program instructions, or it can
result in the use of invalid data in subsequent
computations.

CID allows you to display the contents of program
variables and to observe interactively the behavior of
array subscripts to check for array boundary errors. A
special form of the PRINT command displays a warning
message when an index exceeds an array boundary. A
familiarity with machine representations of numbers can
help you recognize invalid data. Machine representations
are described in appendix C.

SUBPROGRAM CALLS

Calls to nonexistent subprograms or calls with an
incorrect number of arguments are common errors. These
errors can cause the user program to reference locations
outside the allowed field length or to unintentionally
overwrite areas within the field length.

You can debug programs containing subprogram calls by
using a CID feature called an RJ trap which suspends
program execution immediately prior to executing a
function or subroutine call and immediately prior to
executing a RETURN. CID displays the program unit
name and line number where the CALL or RETURN
occurs. You can then specify commands to display the
status of the program as it exists at that precise moment.

INITIALIZATION

Failing to set a variable to its proper value before use is a
common source of error. An undefined variable can
produce unexpected results when used in subsequent
computations. (The value assigned to uninitialized
sections of core is an installation parameter. In some
cases, a special indefinite value is used which causes
abnormal termination when used as an operand in a
subsequent computation.)

You can determine if a variable has been properly
initialized by issuing CID commands to display its value.
Machine representations of operands are shown in
appendix C.

ARITHMETIC ERRORS

Arithmetic errors occur when an attempt is made to
perform an illegal arithmetic operation or when a result is
generated which exceeds the capacity of the central
processor. Such errors can be caused by dividing a number
by zero or by performing arithmetic operations on very
large or very small numbers. When these conditions
occur, an infinite operand is usually generated which
causes abnormal termination of execution when used in a
subsequent computation. Arithmetic errors can also
produce indefinite operands (appendix C).

You can use CID to display the contents of program
variables to determine if they contain numbers that might
lead to arithmetic errors. An infinite value is displayed as
the character R (for out-of-range). An indefinite is
displayed as the character I. A knowledge of machine
capacities can be helpful. The maximum and minimum
allowable numbers are presented in appendix C.

FLOATING POINT ERRORS

Errors in floating point computations often occur because
certain floating point numbers cannot be exactly
represented in a 60-bit word. Such numbers must be
represented by - an approximation. For example, the
decimal fraction .1 does not have an exact binary
representation. Thus, in the program segment: ’

A=0.0
DO 10 1=1, 10
10 A=A+l

the final value of A is not 1.0, as you might expect, but
.9999....

60482700 A

As another example, the computation:

(1./3.)%3.

clearly has a true value of 1.0. When performed on a
binary processor, however, the result is .999..., because
1./3. is an infinitely repeating fraction and cannot be
precisely represented.

Such errors might seem trivial, but when involved in
successive computations, the cumulative effect can
become significant.

Because of the computer's inability to exactly represent
certain numbers, you can get into trouble when testing
floating point values for equality, as in the statement:

IF (X.EQ.1.0) GO TO 2

If the value stored in X is a calculated value, then the
preceding condition might never be satisfied. This
statement should be replaced by:

IF (X-1.0.LT.D) GO TO 20

where D is a value indicating the desired degree of
accuracy. CID helps to reveal this type of error by
allowing you to display variable values during program
execution.

INPUT CHECKING

An important aspect of debugging is the checking of input
data. Many errors occur because a program does not
handle all possiblities for input data, such as end points,
extreme values, or the case where no data, or less than
the expected amount, is supplied. If certain input values
are invalid, the program should check for those values.
Test cases should be designed to include all possibilities
for input data.

CID provides a feature (described in section 5) that allows
you to simulate the reading of input data by specifying a
sequence of commands to be executed in place of the
READ statement. With this feature, you can design and
run test cases without the necessity of creating separate
data files.

PROGRAMMING FOR EASE
OF DEBUGGING

When coding a FORTRAN program, there are certain
guidelines you can follow to make debugging easier.
Probably the most important of these is program
modularity. Simply stated, program modularity means
limiting the size of program units and dividing programs
into subprograms that perform a logical function. A
modular program is easier to understand, easier to modify,
and easier to debug.

CID lends itself to use with a modular program. Through
CID, you can gain control on entry into and exit from a
subprogram. You can use CID to display values input to a
subprogram, intermediate values used in computations
within the subprogram, and values output from the
subprogram. By specifying special! parameters on CID
commands, you can restrict the scope of the commands to
particular program units.

Using a style of coding that avoids GO TO's and minimizes

branches can be an aid in the debugging process. A
program that contains a minimum of branches and flows

60482700 A

logically from top to bottom is much easier to understand
than one that contains many needless branches. CID
provides features that allow you to trace the flow of
control of your executing program; this process is much
easier if the program avoids needlessly complex logic.
(Refer to the FORTRAN Extended user's guide for a
discussion of top down coding.)

Finally, you should avoid programming tricks and
shortcuts, particularly if they depend on system
idiosyncracies. For example, although some systems
initialize memory to zero, it is best to include code in
your program which performs all appropriate initialization.

CID should not be considered a substitute for proper
programming practices. Even though CID offers many
powerful features, a well-written program is much easier
to debug.

Program carefully and try to minimize the number of
errors, Performing a careful visual scan of the program
before execution can reveal many of the more obvious
errors. It is better to have correct code to begin with
than to spend time debugging.

WHAT EFFECT DOES CID HAVE ON
PROGRAM SIZE AND EXECUTION TIME?

If the special FORTRAN features are to be used in a
debug session, the program must be compiled in debug
mode. This requires TS compilation mode. TS
compilation generates unoptimized abject code, generally
resulting in faster compilation but slower execution. The
minimum field length requirement for a program compiled
in TS mode is 40000g words. In addition, compiling in
debug mode generates additional code for use by CID.

The CID module, which is loaded into the user's field
length, increases the memory requirement by
approximately 4000 words. Programs that become
excessively large should be modularized, and the modules
debugged separately.

Certain CID features require a mode of execution called
interpret mode (described in section 3). Execution in
interpret mode can require up to 50 times more computer
time than normal execution. To reduce execution time,
CID provides a command that can be used to turn
interpret mode off while executing portions of a program
already debugged. If necessary, your execution time limit
can be increased by the ETL control statement (NOS/BE)
or the SETTL control statement (NOS).

If a debug session exceeds its allotted execution time, a
time limit interrupt occurs and CID issues the message:

*TIME LIMIT

This frequently occurs while executing in interpret mode.
When a time limit interrupt occurs under NOS, you have
the option to increase the time limit and resume . the
session at the point of the interrupt. This is done by
entering T,n where n is an octal number of CPU seconds.
The best course of action to avoid a time limit interrupt is
to examine the debug session to determine ways to speed
it up. Usually, there are several ways of using CID to
accomplish a particular task., Following are some
suggestions for streamlining debug sessions:

e Use the CLEAR,INTERPRET command when in
interpret mode and executing portions of a program
not requiring interpret mode.

1-3

e Substitute breakpoints for traps that require interpret
mode. You should not be discouraged from using

interpret mode, but you should be aware of its time
requirements.

e Use the frequency parameters (discussed in section 3)
when setting breakpoints within DO loops to cut down
on unnecessary suspensions of execution.

e Avoid using command files if time is critical. Use of
these is time-consuming since it increases the number
of reads. You should not be discouraged from using
command files (discussed in section 5), but you should
be aware of their time requirements.

e Always perform a careful desk-check of your program
before initiating a debug session; use other available
debugging aids, such as the FORTRAN XREF. Do not
rely on CID as your sole debugging tool.

e Execution of command sequences can be
time-consumings; try to keep them short and simple.

e Don't try to perform too many operations in a single
debug session. If necessary, recompile your program,
correcting known bugs, and conduct additional
sessions.

OVERLAY DEBUGGING

CID can be used with programs containing overlays. CID
provides features intended specifically for the debugging
of programs with overlays, including a special trap that
allows you to suspend execution of an object program
when an overlay is loaded. Overlay debugging is discussed
in section 6.

CID cannot be used with programs loaded by either
SEGLOAD or the user-call loader.

1-4

BATCH MODE DEBUGGING

Although CID is mainly intended to be used interactively,
it can be used in batch mode. Batch mode debugging is
discussed in appendix D.

THE FORTRAN EXTENDED
DEBUGGING FACILITY

The FORTRAN Extended Debugging Facility (described in
the FORTRAN Extended reference manual) can be used to
debug programs executed in batch mode. The debugging
facility consists of special statements that are inserted
into a source program and processed at compile time.
When the program is executed the debugging statements
produce output that can help the user find errors in his
program. Some of the functions of the debugging facility
are similar to those of CID, These include the capability
of checking subroutine calls and returns, values stored
into variables, and the flow of execution. In addition, the
debugging facility has capabilities that are not provided
by CID, such as the ability to check array bounds. ‘

The debugging facility does have some disadvantages,
however. Since it can be used only in batch mode, a
debugging session must be completely planned in advance
of program execution. To make changes to debugging
statements or to the program itself it is necessary to
recompile the program. CID, on the other hand, allows
you to enter debugging statements interactively, and
multiple debug sessions can be conducted without
recompiling. As this manual should help to make clear,
CID has many additional capabilities that the debugging
facility does not have.

Execution time is comparable using either CID or the

debugging facility unless CID is executed in interpret
mode, which can greatly increase execution time.

60482700 A

GETTING STARTED

—

This section summarizes the operations necessary for
conducting a debug session and introduces some CID
notation conventions. At the end of the section some
basic commands are presented and used in a sample
session. These commands will enable you to conduct a
productive debug session.

ENTERING THE DEBUG ENVIRONMENT

To execute a program under CID control (and to make use
of the FORTRAN capabilities) you must compile and
execute the program in debug mode.

There are two ways to compile a program in debug mode:

o Initiate -debug mode prior to compilation with the
DEBUG control statement.

e Specify the DB parameter on the FTN control
statement.

To execute the program under CID control you must
initiate debug mode prior to the program load.

DEBUG CONTROL STATEMENT

The DEBUG control statement activates debug mode. The
format of this statement is:

DEBUG
or
DEBUG(ON)

When debug mode is on, you can enter system control
statements in a normal manner. However, when a
FORTRAN program is compiled in debug mode a symbol
table and a line number table are generated as part of the
object code. CID uses these tables while processing the
object program to determine variable locations, source
line locations, and statement locations.

When a program that has been compiled in debug mode is
subsequently executed in debug mode, all the CID features
can be used. Note that a program that has not been
compiled in debug mode can still be executed in debug
mode but the special FORTRAN commands cannot be used
and program locations cannot be referenced symbolically.

If you are using the FTNTS subsystem (NOS) or the
INTERCOM EDITOR (NOS/BE), you can compile and
execute in debug mode by specifying the CID control
statement prior to the first RUN command. Note that
under NOS, the DEBUG statement, as with all system
control statements, must be entered while in the batch
subsystem.

The statement to deactivate debug mode is:

DEBUG(OFF)

60482700 A

When debug mode is turned off, programs combiled in
debug mode execute normally.

DB PARAMETER

Including the DB parameter on the FTN control statement
has the same result as compiling in debug mode. In most
cases, it will.not be necessary to use this parameter. It is
generally used when compiling in batch mode. The DB
parameter automatically activates TS mode. For example:

FTN,I=PROGA,DB,L=LIST

compiles the source program in file PROGA, generates
CID tables, and writes the output listing to file LIST.

EXECUTING UNDER CID CONTROL

A debug session consists of the sequence of interactions
between you and CID which takes place while your object
program is executing in debug mode. The session begins
when you initiate execution of your object program and
ends when you enter the QUIT command.

If you are executing under the NOS/BE EDITOR or the
NOS FTNTS subsystem, you can begin the session by
issuing the = appropriate RUN command, since this
command automatically initiates program execution after
compilation is complete. If your program was compiled
with an FTN control statement the session is initiated by
entering the name of the binary object file (default name
is LGO). The system loads the CID program module along
with your binary program and system and library modules.
Control then transfers to an entry point in CID. CID then
issues the message:

CYBER INTERACTIVE DEBUG
?

The ? character is a prompt signifying that CID is waiting
for user input. At this point you can enter CID commands.

" The examples in figure 2-1 show the statements necessary

for compiling a program and initiating a debug session
under the NOS and NOS/BE operating systems.

Debugging a program might require more than one debug
session. If this is the case, you can terminate the current
session, rewind the binary file, and initiate a new session,
as in the following NOS/BE example:

7quit

DEBUG TERMINATED
.rewind,igo

.lgo

CYBER INTERACTIVE DEBUG
”

2-1

Example 1: Compilation Under NOS/BE INTERCOM Editor.

-+.edit,proga,seq
. .debug
..run,ftn

410008 CM STORAGE USED ,
.841 CP SECONDS COMPILATION TIME

CYBER INTERACTIVE DEBUG
?

Example 2: Compilation Under NOS/BE INTERCOM.

COMMAND- debug
COMMAND- ftn,i=proga,l=list

41889B CM STORAGE USED
.044 CP SECONDS COMPILATION TIME
COMMAND~ 1lgo

CYBER INTERACTIVE DEBUG
2

Example 3: Compilation Under NOS Time-Sharing System.

/debug

SDEBUG.

/ftnts

OLD, NEW, OR LIB FILE: old,proga

READY.
run

78/12/12. 88.97.41.
PROGRAM PROGA

CYBER INTERACTIVE DEBUG
?

Figure 2-1. Initiating a Debug Session

Under NOS:

?quit

SRU 3.266 UNTS,

RUN COMPLETE.

batch

$RFL,0.

/rewind,lgo

$REWIND,LGO

/1go

CYBER INTERACTIVE DEBUG
Py

Any CID commands issued during a session apply only to
that session; subsequent sessions revert to the original
compiled version of the program. Note that even though a
debug session has been terminated, debug mode remains
on until you turn it off with DEBUG(OFF). When CID is
on, all executions of user programs occur under CID
control.

ENTERING CID COMMANDS

The CID prompt for user response is a ? character. You
enter a CID command on the same line and press
RETURN, CID then processes the command, issues an
informative message indicating the disposition of the
command or displays any output that the command calls
for, and issues another ? prompt. CID continues to issue
prompts after processing commands until you enter the
command to resume execution of your program or
terminate the session.

COMMAND FORMATS

CID commands are of two types: standard and special
FORTRAN commands. Standard CID commands consist of
a command name followed by a list of parameters
separated by commas. For example, the command to
display the first five words of the array A in octal format
is:

DISPLAY,A,0,5

In standard CID commands, certain parameters are
optional; if an optional parameter is omitted, but a
subsequent parameter appears, the omitted parameter is
indicated by two successive commas, as in the command:

DISPLAY,A,,5

The second command type is limited to FORTRAN
programs compiled with the DB option. The form of these
commands is identical to corresponding FORTRAN
statements. An example of such a command is:

PRINT*,"VALUE IS",X

Commands are normally entered one per line, but more
than one command can be included on a line if separated
by semicolons, as in the following example:

?SET, TRAP,LINE,*; SET,BREAKPOINT,L.10; GO

Blanks are ignored and can be inserted anywhere in a line.
A command cannot span more than one line.

SHORTHAND NOTATION

Most standard CID commands have a shorthand form that
permits you to omit the comma separator and to
substitute abbreviations for the command name and
certain parameters. For example, the command:

SET, TRAP,LINE,*
can be expressed as:

STL*

The shorthand notation provides a more convenient
method of specifying commands, and you are encouraged
to use this form as you become more familiar with CID,
However, for purposes of clarity and consistency, only the
full command forms are used in this manual. The short
command forms are listed in appendix E. :

60482700 A

- SOME ESSENTIAL COMMANDS

The following paragraphs describe three CID commands
that enable you to conduct simple debug sessions. These
are the GO command, the QUIT command, and the PRINT
command. These commands are discussed in greater
detail in section 3.

GO COMMAND

The command to initiate or resume program execution is:
GO

This command causes execution to begin at the location
where it was suspended.

Once execution of your program has been suspended, any
number of CID commands can be entered. Execution
remains suspended until GO is entered.

QUIT COMMAND
The command to terminate a debug session is:
QuUIT ‘

In response to the QUIT command CID displays the
following message under NOS/BE and NOS batch
subsystem:

DEBUG TERMINATED

Under NOS FTNTS subsystem:
SRU n.nnn UNTS
RUN COMPLETE.

The QUIT command causes an exit from the current
session and a return to system command mode. Files
accessed by the FORTRAN program are closed. Note,
however, that debug mode remains on until DEBUG(OFF)
is specified.

Traps, breakpoints, and other alterations to the object
program exist only for the duration of the debug session.
When the session is terminated, any changes made to the
program are lost and the program reverts to its compiled
version. The object program can be rewound and executed
normally or again under contro! of CID. .

PRINT COMMAND

CID provides several commands for displaying the values
of program variables. The simplest of these is the
command:

PRINT#,list
where list is a list of program variables.
This command lists the values of the specified program
variables. Values are formatted according to type

declared, implicitly or explicitly, in the source program
(integer, real, logical, or complex).

60482700 A

SAMPLE DEBUG SESSION

The preceding commands are now used to conduct: a
simple debug session.

A FORTRAN program and debug session log are
illustrated in figure 2-2, The program defines two
variables and performs a simple computation. The
program is executed under CID control. Since no
provision is made for suspending execution, the program
runs to completion. CID then displays the message:

*T#17,END IN L.5
?

This is a trap message, explained in section 3. CID
automatically sets a trap to gain control on program
termination. The PRINT command prints the values of
the specified program variables, and the QUIT command
terminates the session.

PROGRAM LISTINGS

To use CID effectively you should have a program listing
to which you can refer. The particular listing you should
use depends on whether you are debugging under NOS in
the batch subsystem, under NOS in the FTNTS subsystem,
or NOS/BE INTERCOM.

CID references sequence numbers located at the beginning
of FORTRAN. source statements. Programs compiled
under NOS with the RUN command have line numbers
inserted in columns 1 through 5 by the NOS line editor. In
this case you should use a listing produced by the LIST or
LNH command. Under NOS/BE, EDITOR inserts sequence
numbers in columns 76 through 80 and CID uses the
numbers inserted at the beginning of each statement by
the compiler. Thus, when using the RUN,FTN command,
you cannot use the listing produced by LIST,ALL which
shows the EDITOR-produced sequence numbers at the
beginning of each statement. In this case, you can use a
listing: produced by LIST,ALL,SEQ and write in line
numbers yourself according to the way the compiler does
it. The FORTRAN compiler numbers statements in
increments of 1 starting at 1. Line numbering starts anew
at the beginning of each subprogram.

When compiling with the FTN statement, you can obtain a
compiler output listing by specifying the L parameter on
the FTN control statement and printing the resulting
output file. Examples of source line references are
illustrated under Program Address Notation.

PROGRAM ADDRESS NOTATION

CID provides notation for specifying single addresses
within a program as well as ranges of successive
addresses. The address notations most commonly used by
FORTRAN programmers are summarized in tables 2-1 and
2-2. These notations are also used by CID in informative
messages and other types of output.

If a program contains multiple subprograms, a qualified
address form can be used to identify an address in a
particular subprogram. Unqualified addresses are assumed
to belong to a program unit called the home program.

Not all address formats are valid for all CID commands.
Valid formats for each command are noted in section 3.

Program COMPC:
1 PROGRAM COMPC 74/74 TS 1D
PROGRAM COMPC
A=3.0
B=2.08
C=(A+B)/(A~B)
S STOP
END
Session Log:
CYBER INTERACTIVE DEBUG
2g0 - Initiate program execution.
*T $#17, END IN L.5—-—— Program runs to completion; END trap gives control to user.
?
STOP }4— Note: These FORTRAN messages appear on program 7
* -809 CP SECONDS EXECUTION TIME ' termination, usually immediately after the Debug
p[int ra,b,Cc - \ input prompt.
3. 2. 5. ' Print the values of A, B, and C.
?quit —= Terminate session.
DEBUG TERMINATED
Figure 2-2. Sample Program and Debug Session
TABLE 2-1. ADDRESS NOTATION HOME PROGRAM
FORTRAN programs consist of a main program and,
optionally, one or more subprograms. Variable names
Specification Description within a program are local to the program unit in which
they are defined; that is, variable names are known only
within the program in which they are used. This concept
var Simple or subscripted variable in is illustrated in figure 2-3. In this example, the
home program. variable A is defined twice: once in the main program
and once in the subroutine. However, execution of the
L.n Line n in home program. statement A=1.0 in the subroutine does not alter the
contents of the variable A in the main program; the value
S.n Statement with label n in home printed for A is always 1.0. Although two variables have
program. the same name, each is local to the program unit in which
it is defined.
P.prog_var Simple or subscripted variable in -
program unit prog.
P.prog_L.n Source line n in program unit :E?G?M MAIN(OUTPUT)
prog. CALL SUBA
*® W = "
P.prog_S.n Source statement with label n in ggég‘r " OA= TR
program unit prog. END
. C
C.n n+lst location of unlabeled SUBROUTINE SUBA
common; n > 0. A=2.0
C.blk_n n+lst location of common block gﬁgum
blk; n > O.
XC.blk n n+lst location of ECS/LCM common
block blk; n > 0. Figure 2-3. Program and Subroutine Hlustrating
Local Variables
2-4 60482700 A

TABLE 2-2. ADDRESS RANGE SPECIFICATION

Specification

Description

P.prog Range of addresses
C. Range of addresses
C.blk Range of addresses
XC.blk Range of addresses

occupied by program unit prog.
occupied by unlabeled common.
occupied by common block blk.

occupied by ECS/LCM common block blk.

var...var+n
L.nj...L.ny

S.nj...S.n3
program.

P.prog var...P.prog_var+n
i
P.prog L.nj...P.prog L.n2

P.prog S.nj...P.prog_S.np

C._ nj...C._mo
C.blk nj...C.blk njp

XC.blk nj...XC.blk ng

Location of var and n succeeding locations.
Sources lines n) through nj, inclusive, of home program.

Source statement labeled nj, ny, and all statements in between, in home

Location of var and n succeeding locations, in program unit prog.
Source lines nj through np,. inclusive, in program unit prog.

Source statements labeled nj, ng, and all statements in between, in
program unit prog.

Locations n)+l through np+l of unlabeled common.
Locations nj+l through ny+l of common block blk.

Locations nj+l through ng+l of ECS/LCM common block blk.

The same concept of locality applies to CID. When a
program containing several subroutines is executed under
CID control, execution can be suspended in the main
program or in any of the subprograms. By default, the
home program is the program unit in control at the time
of suspension. Addresses specified in most CID commands
are local to the home program, unless appropriate
qualifiers are specified. Any program unit can be
designated at the home program by the SET,HOME
command, as described under Referencing Addresses
Outside the Home Program.

The home program concept is illustrated by the debug
session in figure 2-4, produced by executing the program
in figure 2-3 in debug mode. Breakpoints are set to
suspend execution in the main program after the call to
SUBA, and in SUBA itself. When execution is suspended in
SUBA, SUBA is the home program and the PRINT
command shows 2.0 as the value of A; when execution is
suspended in the main program, the value of A is 1.0.

SPECIFYING A SINGLE ADDRESS

Most CID commands require the specification of at least
one program address to identify a program variable or
statement location. For example, to display the contents
of a variable you must specify the address of the variable;
to set a breakpoint at a location within a program you
must specify the location address.

addresses

CID allows you to reference

symbolically by specifying:

program

e Variable name
e Statement label

° Source line number

60482700 A

A program location can also be referenced by specifying
its relative octal address; however, this method is seldom
used by FORTRAN programmers. The following .

paragraphs describe the available methods of address
specification.

Variable Name

Variables within a home program can be referenced simply
by specifying the variable name, as in the following
examples:

PRINT*,X,Y
Display the value of the variables X and Y.

DISPL.AY,A
Display the value of the variable A.

X=Y+Z
Calculate the value of Y+Z and store it in X.

Source Line Number

A statement within a home program can be referenced by
specifying the line number of the statement. The format
of a line number specification is:

L.n

where n is the line number. The line numbers referenced
by CID depend on how the program was compiled.

e If the program was compiled under NOS in the FTNTS
subsystem, CID uses line numbers generated by the
line editor. :

CYBER INTERACTIVE DEBUG

?set ,breakpoint,l.4 <¢—— 0 Set breakpoint at line 4 of main program.

?set,breakpoint,p.suba_l.4-e—— Set breakpoint at line 4 of subroutine SUBA.

2?90

Initiate execution.

*B $#2, AT P.SUBA_L.4 ~s«————— Execution suspended at line 4 of SUBA.
Print value of A in SUBA.

?print*,a

2.
?go

*B $1, AT L.4 (OF P.MAIN)--s—— Execution suspended at line 4 of main program.
Print value of A in main program. :

" ?print*,a

1.
?guit

DEBUG TERMINATED

Figure 2-4. Debug Session Illustrating Local Variables

e If the program was compiled with the FTN statement
or by the RUN,FTN command under NOS/BE, CID
uses line numbers generated by the FORTRAN
compiler.

Example 1 of figure 2-5 illustrates a program to be
debugged under NOS. The listing was produced by
entering the LIST command while in the FTNTS subsystem
under NOS, By default, lines are numbered consecutively
in increments of 10 starting at 100. These values can be
changed with the RESEQ command. Leading zeros can be
omitted when referencing a source line. For example, the
commands

SET,BREAKPOINT,L.200

sets a breakpoint at the statement IF(R(I).GT.9999.0) GO
TO 14, assuming that subroutine COMP is the home
program.

Example 2 of figure 2-5 illustrates a program to be
debugged under NOS/BE. The listing was produced by the
FORTRAN compiler. Lines are numbered consecutively in
increments of 1 starting at 1; numbers appear on the
listing at every fifth line. In a program containing
multiple program units, line numbering starts anew after
the end of each subprogram. In this example, the
command:

SET,BREAKPOINT,L..4
refers either to the statement N=10 in the main program,
or to the statement IF(R(I).GT.9999.0) GO TO 14 in the
subroutine, depending on which is the home program.
In most command formats the L.n notation can only be
used to reference executable statements.
Statement Label
Program statements can be referenced by specifying a
label assigned to the statement in the source program.

The format of a statement label specificaton is:

S.n

2-6

where n is the statement label. Only executable
statements can be referenced in this manner.

Source statement specifications are most often used when
setting or referencing breakpoints at particular locations.
For example, referring to the program in figure 2-5, the
command:

SET,BREAKPOINT,S.14

sets a breakpoint at the statement 14 CONTINUE, if
subroutine COMP is the home program.

SPECIFYING AN ADDRESS RANGE

Some command formats require the specification of a
range of successive addresses. An address range is
generally specified under the following circumstances:

e To display or alter the contents of an array or
common block

e To limit the scope of a CID command to a particular

program unit or portion of a program unit

The notation used for specifying address ranges is
summarized in table 2-2. Only those formats useful to
FORTRAN programmers are discussed here. Refer to the
CYBER Interactive Debug reference manual for additional
information on address range specification.

Program Unit Specification

The range of addresses occupied by a FORTRAN program
unit (main program or executable subprogram) is denoted
by the notation:

P.prog

where prog is a program unit name.

60482700 A

Example 1. NOS Time-Sharing System Listing:

00109
ealleo
00120
80130
801490
890158
90168
#9178
80188
80185
081990
80209
89218
80228
96238
80240
06250

PROGRAM INIT (INPUT,OUTPUT)

N=10

CALL COMP (N,R,S,T,X,Y,Z)
STOP

END

IF (R(I).GT.9999.8) GO TO 14
DO 14 I=1,N ’
X(I)=R(I)+S(I)
Y{I)=R{I)+T(I)
Z(I)=S(I)+T(I)

14 CONTINUE

RETURN

END

Example 2. Compiler Output Listing:

1 PROGRAM INIT

N=10

STOP
END

1 SUBROUTINE COMP

14 CONTINUE
RETURN

1 END

DIMENSION R(19) ,S(18),T(10) ,X(18),Y(18),2(16)
DATA R/16*1.6/,5/10*~3.5/,T/18%4.1/

SUBROUTINE COMP (N,R,S,T,X,Y,2)
DIMENSION R(N),S{N),T(N) ,X{N),Y(N),2Z(N)

73/74

PROGRAM INIT (INPUT,OUTPUT)
DIMENSION R(19),S(18),T(18),X(186),Y(18),Z(10)
DATA R/18*1.6/,5/10*~3.5/,T/16%*4.1/

5 CALL COMP (N,R,S,T,X,Y,Z)

73/74

SUBROUTINE COMP (N,R,S,T,X,Y,Z)
DIMENSION R(N),S(N),T(N) X(N) ,Y(N),Z(N)
DO 14 I=1,N
IF (R(I).GT.9999.8) GO TO 14

5 X(I)=R(I)+S(I)
Y(I)=R(I)+T(I)
Z(I)=T(I)+S(I)

TS ID

TS ID

Figure 2-5. Program Listings for Use With CID

As will be shown later in this section, it is often necessary
to specify a program unit name as part of a CID command
when you are debugging a program containing several
subprograms. For example, the command:

SET,TRAP,JUMP,P.SETB
sets a JUMP trap to occur at all branches within the

program unit SETB.

Common Block Specification

The locations occupied by a common block are designated
by the following notation:

60482700 A

Common Block Type Notation
Labelled common block (central memory) C.name
Labelled common block (ECS/LCM) XC.name
Unlabelled c‘ommon block C.

This notation is used to reference a common block in its
entirety. For example, the command:

SET,TRAP,STORE,C.BLKA

sets a STORE trap for each location of common block
BLKA.

2-7

To denote a particular location within a common block, a
decimal integer offset can be specified as part of the
common block specification. For example,

C.BCOM 2

denotes the third word of common block BCOM. The first
word of a common block is designated by an offset of 0.
An underscore character separates the block name from
the offset. (The underscore character is displayed as an
arrow () on some ASCII terminals.)

Ellipsis Notation

Certain commands allow you to specify an address range
by including an ellipsis between the first and last address
in the range as follows:)

addressl...address2

where addressl and address2 are source line specifications
(L.n) or statement label specifications (S.n). If the S.n
notation is used, the first label must precede the second
label in the source program.

The ellipsis notation can also have the form:
var...var+n

where var is a variable name and n is a decimal integer
offset. This form specifies the n locations var through
var+n, and can be used to indicate an array, as described
under Array Specification.

Examples:

SET,TRAP,LINE,L .4...L.20
Set a line trap at source lines 4 through 20.

DISPLAY, X...X+4
Display the values stored at four successive
locations starting at X.

SET,TRAP,JUMP,S.10...5.50
Set a JUMPTRAP at the statement labeled 10
and succeeding statements, through the
statement labeled 50.

Array Specification

The notation used to specify an array to CID depends on
the command. For example, to display the contents of an
array with the PRINT command, it is necessary to specify
only the first location of the array. Thus, if a program
contains the statement DIMENSION A(10) then the
command:

PRINT*,A
displays the contents of each of the 10 words of A.

For other CID commands, however, specifying the array
name designates only the first location of the array. For
these commands, the ellipsis notation is used to designate
an array, as in the following examples:

DISPLAY,A...A+9
Display the contents of A(1) through A(10).

DISPLAY,A
Display the contents of A(1),

SET,TRAP,STORE, A+4...A+6
Set a store trap for array elements A(5), A(6),
and A(7).

In ellipsis notation, note that A corresponds to A(1), A+l
corresponds to A(2), and so forth.

REFERENCING ADDRESSES OUTSIDE
THE HOME PROGRAM

In some cases, you might wish to reference a location in a
program unit other than the home program. For example,
when execution is suspended in the main program, you
might want to set a breakpoint or display a value local to
another subprogram. To accomplish this you can do either
of the following:

e Use CID commands which allow an address
specification to be qualified by a program unit name.

e Designate a new home program with the SET,HOME
command.

Address Qualifiers

Certain CID commands allow you to use address
qualification notation to specify an address in a program
other than the home program. An address qualifier has
the form:

P.prog loc
where prog is the name of a program unit and loc is an

address within the program unit; loc can have one of the
following forms:

L.n Source line number
S.n Statement label
Simple or subscripted variable name

The character separating prog and loc is an underscore
character. (The underscore character is printed as an
arrow () on some ASCII terminals.)

This notation is valid for the SET, DISPLAY, LIST,
CLEAR, ENTER, and MOVE commands; it is not valid for
the PRINT, IF, and assignment commands.

The following examples refer to the program in figure 2-3:

DISPLAY,P.MAIN A
Display the contents of A as defined in MAIN,

DISPLAY,P.SUBA A
Display the contents of A as defined in
subroutine SUBA.

SET,BREAKPOINT,P.SUBA L..190
Set a breakpoint at line 190 of subroutine SUBA.

Address qualifiers can be used in conjunction with ellipsis

notation to specify a range of addresses within a

particular program unit, as in the command:
SET,TRAP,LINE,P.GETY _L.10...P.GETY_L.20

This command establishes a LINE trap at lines 10 through
20 of program unit GETY.

60482700 A

Additional examples of the use of address qualifiers are
presented in the discussions of the individual commands.

SET,HOME Command

As an alternative to the address qualification notation, or
in cases where this notation is invalid, you can specify
addresses outside the default home program by first
issuing the command:

SET,HOME,P.prog

where prog is a program unit name. This command
changes the home program- for purposes of address
specification. Any unqualified addresses specified after
entering the SET,HOME command belong to prog. It is
important to note that the SET,HOME command does not
alter the location where execution resumes when you issue
GO or EXECUTE; execution always resumes either at the
location where it was suspended or at the address
specified in the GO or EXECUTE command regardless of
SET,HOME specification. In addition, when execution is
resumed, a previous SET,HOME specification is lost and
the home program reverts to the one currently executing.

The debug session in figure 2-6, produced by executing the
program in figure 2-3 in debug mode, illustrates the
SET,HOME command. Note that on program termination,
the home program is once again the main program; to
print A in SUBX, a SET,HOME must be issued.

CONNECTED FILES

Programs using connected files can be executed under CID
control. When using connected files it is helpful to code

‘'your program in such a way as to differentiate between a

program request for input and a CID request for input.
Likewise, you should have some method of distinguishing
program output from CID output. This is particularly
important when running under NOS since -the system
automatically inserts a ? prompt, identical to the CID
prompt, at the beginning of a line to indicate a program
request for user input.

An example of connected file usage under CID control is
illustrated in figure 2-7 (NOS) and figure 2-8 (NOS/BE).
Program ATR reads the coordinates of the vertices of a

triangle and. calculates the area of the triangle. Files

INPUT and OUTPUT are used so that input and output can
be performed through the terminal. Immediately before
the READ is executed, a WRITE statement displays two

. asterisks (**) to indicate that the program is waiting for

user input. Input data is then entered on the same line as
the asterisks. After the final calculation, a WRITE
statement displays a message and the calculated area.

The NOS se.ssio'n is slightly more corifusing because of the
system-issued ? prompt. The two asterisks, however,

“identify the subsequent ? as being issued by NOS and not

by CID.

CYBER INTERACTIVE DEBUG
?go

A= 1.

*T $17, END IN L.S
J ?
STO

print*,a

P
.858 CP SECONDS EXECUTION TIME

Program terminates.

Print value of A in home program (MAIN).

1.
?set ,home,p.suba

Designate SUBA as home program.

?print*,a
2.
?2quit

DEBUG TERMINATED

Print value of A in home program (SUBA).

Figure 2-6. Debug Session Illustrating SET,HOME Command

60482700 A

00100
po8110
90120
09130
80140
90150
00169
06170
09189
006190
00200
80210
00220
006230
80240

? set,breakpoint,1.200
? go—=

PROGRAM ATR (INPUT,OUTPUT)

19 WRITE 1080

100 FORMAT(" **)

READ 158, X1,Y1,X2,Y2,X3,Y3

158 FORMAT(6F6.2)
IF(X1.EQ.9999.8) STOP
S1=SQRT((X2=-X1)**2 + (Y2=Yl)**2)
S2=SQRT((X3=~X1) **2 + (Y3=Yl) **2)
S3=SORT((X3-X2) **2 + (Y3=Y2)**2)
T=(S1+52+S3) /2.0
A=SQRT(T* (T=S1) *(T~S2) *(T~S3))
WRITE 200, A

208 FORMAT(" AREA IS ",F8.2)

GO TO 19

END

CYBER INTERACTIVE DEBUG

& W

1.0

2.4 ~5.1 0.4 =-2.2 0.9~
*B #1, AT L.200—=

Set breakpoint at line 200.

Initiate execution.

Program writes asterisks.

System issues input prompt. . User enters input data.

? print*,sl,s2,s3-=
6.4195015382816 3.5341194094145 2.9427877939124

? go
AREA 1S 1.37
*%)
?2 9999.0 =
*T $17, END IN L.159
? quit
SRU 5.719 UNTS.

RUN COMPLETE.

Execution suspended at line 200.
Display intermediate values.

Resume execution.
Program writes message and value.

User enters 9999.0 to indicate end of input.

Terminate session.

2-10

Figure 2-7. Program ATR and Debug Session Illustrating Connected Files (NOS)

60482700 A

1 PROGRAM ATR

10
108

5 156

1¢

200
15

CYBER INTERACTIVE DEBUG
?set ,breakpoint,l1.1]l =

73/74 TS 1D

PROGRAM ATR(INPUT,OUTPUT)

WRITE 109

FORMAT (" ** ")

READ 158, X1,Y1,X2,Y2,X3,Y3
FORMAT(6F6.2)

IF(X1.EQ.9999.8) STOP
S1=SORT((X2~X1) **2 + (Y2=~Y]l)**2)
S2=SQRT((X3~X1) **2 + (Y3~Yl)**2)
S3=SQRT((X3~X2) **2 + (Y3-Y2)**2)
T=(S1+S2+S83) /2.0
A=SQRT(T* (T~S1) *(T~S2) * (T=S3))
WRITE 200, A

FORMAT(" AREA IS ",F6.2)

GO TO 10

END

290 —=

Set breakpoint at line 11.

Initiate execution.

A~
*%).0 2,4 ~5.1 0.4

*B #1, AT L.1]l--=

Program is ready for input.
-2.2 o9 - User ‘enters input data.

?print*,sl,s2,83 -=—

Execution suspended at fine 11.
Display intermediate values.

290

6.4195015382816 3.5341194094145 2.9427877939124

Resume execution.

AREA IS 1.37
%49999 .0 =

Program writes message and value.
User enters 9899.0 to indicate end of input.

*T $17, END IN L.6

Terminate session.

2quit —-
STOP

DEBUG TERMINATED

<249 CP SECONDS EXECUTION TIME

Figure 2-8. Program ATR and Debug Session Illustrating Connected Files (NOS/BE)

60482700 A

2-11

INTERACTIVE DEBUGGING 3

“‘

Once you have compiled your FORTRAN program in debug
mode and initiated a debug session you are ready to begin
interactive debugging. Program execution under. CID
control involves an interaction between you and CID; you
specify conditions for which program execution is to be
suspended, and CID gains control when these conditions
are satisfied and allows you to enter various CID
commands to examine and alter the status of the program.

The preceding section presented some elementary
commands that can be used to conduct a simple debug
session. This section presents additional commands that
will allow you to make more productive use of CID. The
commands discussed in this section provide the capability
to:

e Suspend program execution; commands are
SET,BREAKPOINT and SET,TRAP,

e Display the current contents of program variables and
arrays at the terminal while executioh is suspended;
commands are PRINT, DISPLAY, and LIST,VALUES.

e Alter the contents of variables and arrays; commands
are MOVE and assignment.

TRAPS AND BREAKPOIN"'S

When conducting a debug session, you must initially
provide for gaining interactive control at some point or
points within your program. CID provides two methods of
doing this: traps and breakpoints.

A trap is a CID mechanism that detects the occurrence of
a specified condition during program execution, suspends
execution at that point, and transfers control to CID. A
breakpoint is a location within the user program where
execution is to be suspended.

In a typical debug session, traps or breakpoints are
established prior to initiating execution of the program.
When a trap condition occurs or a breakpoint is detected
during execution, CID receives control and, in turn, gives
you the opportunity to enter CID commands.

In most debugging situations, you should probably use
breakpoints, rather than traps, to suspend execution.
Traps can be useful in certain cases, but their use often
requires you to be familiar with COMPASS instructions.
In addition, certain traps greatly increase execution time.
Breakpoints allow you to suspend execution at any
executable statement in your program and can, in most
cases, be substituted for traps.

Traps and breakpoints exist only for the duration of a
debug session. Once a session is terminated, all traps and
breakpoints set during a session cease to exist. An object
program is not permanently altered by any traps or
breakpoints established during a session.

60482700 A

SUSPENDING PROGRAM EXECUTION
WITH BREAKPOINTS

A breakpoint is a mechanism established at a specified
location within a program which, when the location is
reached during program execution, suspends execution and
gives control to CID. CID then allows you to issue
commands. :

SET,BREAKPOINT COMMAND

The command to establish a breakpoint has the form:

SET,BREAKPOINT, loc

where loc is a source line number (L.n) or a statement
label specification (S.n). To set a breakpoint at a location
not in the home program you can either specify a qualified
address form (P.name L.n or P.name S.n) or designate a
new home program with the SET,HOME command.
Following are two examples of the SET,BREAKPOINT
command:

SET,BREAKPOINT,L.14
SET,BREAKPOINT,P.MXY L.25

The first command sets a breakpoint at line 14 of the
Home program.. The second command sets a breakpoint at
line 25 of program unit MXY.

Breakpoints can be established at any time in the debug
session when execution is suspended and CID has issued a
? prompt.

A breakpoint can be established at any executable
statement. Only one breakpoint can be set at a single
statement; however, breakpoints can be set at locations
where traps occur and all are recognized. Breakpoints are
always recognized first.

Establishing a breakpoint at a specified location does not
alter execution of the statement at that location. When a
breakpoint is encountered during execution, CID gains
control before the statement is executed. When execution
is resumed, execution begins with the statement at the
breakpoint location.

When a breakpoint is encountered, CID receives control
and issues the following message:

*B #n AT loc

where n is a breakpoint number assigned by CID and loc is
the statement (S.n or L.n) where the breakpoint was set.
Breakpoints are assigned consecutive numbers in the order
they are established, starting with 1. You can refer to
breakpoints by number in the CLEAR command (described
later in this section), LIST command (section 4), and SAVE
command (section 5).

3-1

CID provides another form of the SET,BREAKPOINT
command that is extremely useful for debugging DO loops
and other sections of code that are executed frequently.
The form of this command is:

SET,BREAKPOINT,loc,first,last,step

where first, last, and step are frequency parameters. This
command sets a breakpoint that suspends execution every
stepth time the breakpoint is reached, beginning with the
first time and not after the last time. For example, the
commands i

SET,BREAKPOINT,L.50,10,100,5

sets a breakpoint at the statement labeled 50 which is
recognized on the 10th time the statement is reached and
every 5th time thereafter, up through the 100th time.

As an example of the use of the frequency parameters,
consider the following loop:

DO 8 1=1,1000
X=X+FX/DX
8 CONTINUE
To examine the progress of the iteration X=X+FX/DX, you
- could set a breakpoint at statement 8, specifying
frequency parameters to suspend execution at an interval
rather than on each pass through the loop. For example,

SET,BREAKPOINT,S.8,1,1000,100

suspends execution on every 100th pass through the loop,
starting with the first pass.

To illustrate the SET,BREAKPOINT command the
program shown in figure 3-1 is executed under CID
control. The debug session is shown in figure 3-2. The
program consists of a main program and a subroutine
called AREA. The main program reads data records, with
each record containing the coordinates of the vertices of
a triangle, and calls AREA. AREA calculates the area of
the triangle. The purpose of the debug session is to
suspend execution at the beginning of the subroutine to
examine the input, and after the final calculation to
examine intermediate values and final results. To
accomplish this, breakpoints are set at lines 2 and 6.
When execution is suspended at line 6, a breakpoint is set
at line 7. .The PRINT command displays the desired
information. The QUIT command terminates the session
after the first pass through AREA.

REMOVING BREAKPOINTS

Breakpoints can be removed during a debug session with
the CLEAR,BREAKPOINT command. This command has
the following forms:

CLEAR,BREAKPOINT
CLEAR,BREAKPOINT,list

Main Program and Subroutine:

PROGRAM RDTR

10

12

SUBROUTINE AREA

Input Data:

T4/74 TS ID

PROGRAM RDTR(TRFILE, TAPE2=TRFILE)
REWIND 2

READ (2,*) X1,Y1,X2,Y2,x3,Y3
IF(EOF(2) .NE.@) GO TO 12

CALL AREA(X1,Y1,X2,Y2,X3,¥3,A)
GO TO 18

STOP

END

74/74 TS ID

SUBROUTINE AREA(X1,Y1,X2,Y2,X3,Y3,A)
S1=SORT((X2=~X1) **2 + (Y2~Yl)**2)
S2=SQRT({X3=X1) **2 + (Y3~Yl) **2)
S3=SQRT((X3=X2) **2 + (Y3~-Y2)**2)
T=(S1+S2+53) /2.0
A=SQRT(T* (T~S1) *(T=S2) *(T~S3))
RETURN

END

Figure 3-1. Subroutine AREA,

Main Program, and Input File

60482700 A

CYBER INTERACTIVE DEBUG

?set,breakpoint,p.area 1.2

?set ,breakpoint ;p.area_l .6 -

290 =

Set breakpoint at line 2 of AREA.

Set breakpoint at line 6 of AREA.

*B $1, AT P.AREA L.2 =

?print*,x1,yl,x2,y2,x3,y3

8. 1. .5 2. =-1. 1.2
290 —=

*B $2, AT P.AREA_L.6

?print*,sl,s2,s3 =

1.1180339887499 1.61980839827186 1.7
?set ,breakpoint,1.7

2g0 —=

*B #3, AT L.7
?print*,a =

.54999999999999
2quit =

DEBUG TERMINATED

Initiate execution.

Execution suspended at line 2 of AREA.
Display input values.

Resume execution.

Execution suspended at line 6 of AREA.

Display intermediate values.

Set breakpoint at line 7 of home program.

Resume execution.
Display value of A.

Terminate session.

Figure 3-2. Debug Session Illustrating SET,BREAKPOINT Command

where list is a list of breakpoint locations, separated by
commas. The first form clears all breakpoints. The
second form clears the specified breakpoints. The list
parameter can have any of the forms shown in table 3-1.

The CLEAR,BREAKPOINT command should be used for
removing breakpoints that are no longer needed in a debug
session - in order to eliminate unnecessary and
time-consuming suspensions of execution.

Following are examples of the CLEAR,BREAKPOINT
command:

CLEAR,BREAKPOINT,L.14,l .20,P.SUB3 S.5
Remove the breakpoints from lines 14 and 20 of
the home program and from the statement
labeled 5 in program unit SUB3.

CLEAR,BREAKPOINT,P.READXY,P.ADDR
Remove all breakpoints from program units
READXY and ADDR.

CLEAR,BREAKPOINT,P.MTX L.4...P.MTX L.100
Remove all breakpoints from lines 4 through 100
of program unit MTX.

CLEAR,BREAKPOINT, #3,#5,#6
Remove breakpoints identified by numbers 3, 5,
and 6.

60482700 A

TABLE 3-1. OPTIONS FOR CLEAR,BREAKPOINT
COMMAND

List Parameter

Explanation

locy,l0cg,...

loc;y...locy

P.name;,P,namep,...

#np,#n9,...

Clears the breakpoints from
the specified locations;
locn can have any of the
following forms:

L.n
S.n
P.name L.n
P.name S.n

Clears all breakpoints from
the specified inclusive
range; locn can have any of
the following forms:

L.n
S.n
P.name L.n
P.name_S.n

Clears all breakpoints from
the specified program units.

Removes the breakpoints
identified by the specified
numbers.

SUSPENDING PROGRAM EXECUTION
WITH TRAPS

A trap is a special condition within a program which
causes control to automatically transfer to CID whenever
that condition is detected during execution of the program.

The most useful traps to the FORTRAN programmer are
the LINE and STORE traps and the default END and
ABORT traps. These traps are discussed first. The JUMP
and RJ traps are less useful to the average programmer
and are discussed at the end of this section. The

" OVERLAY trap is used only in programs with overlays;
this trap is discussed in section 6.

Conditions for which traps can be established are listed in
table 3-2. Only those traps considered most useful to
FORTRAN programmers are discussed here. Refer to the
CID reference manual for information on other traps.

When a trap condition is detected, execution is suspended
and CID gains control and issues a message identifying the
trap, followed by a ? prompt for user input. The message
gives information about the trap, including the trap type,
number, and the address (L.n or S.n) of the location where
the trap. occurred. The trap number is a decimal integer
assigned by CID. Traps are numbered sequentially in the
order they are established. You can reference traps by

‘ number in the LIST, CLEAR, and SAVE commands. An
example of a trap message is:

*T #3, RJIINP.SBX L.5
?

In this example, an RJ trap is detected in line 5 of
program unit SBX; this trap was the third one established
by the programmer. :

In response to the ? prompt you can enter any CID
command. Typically, you will use this opportunity to
examine the values of program variables and make any
desired changes to these values. Program execution can
be resumed by entering a GO command.

A NOTE ON TRAPS

It is important to note that most of the CID traps occur
when a particular machine instruction is detected. Some
traps, such as the FETCH and STORE traps, occur after
the instruction is executed; others, such as the JUMP
trap, occur before the instruction is executed. Table 3-1
indicates whether a particular trap occurs before or after
the instruction is executed.

Since a FORTRAN statement usually generates seversl
machine instructions, confusion can arise as to the precise
point in the execution of a statement at which the trap
occurred. The trap message indicates only the number of
the statement that was executing when the trap
occurred. The point in the execution of a statement at
which each trap type suspends execution is stated in the
discussion of-the trap type.

DEFAULT TRAPS

CID provides default traps that are set automatically at
the beginning of a debug session. These traps allow you to

gain control without actually establishing any traps or

breakpoints. The default traps are the END, ABORT, and

INTERRUPT traps.

The END and ABORT traps together transfer control to
CID on. any program termination. Thus, for the initial
debug session, you can allow your program to terminate;
by -examining the status of the program at the point of
termination, you can determine where traps or
breakpoints should be set for subsequent sessions.

INTERRUPT Trap

An INTERRUPT trap occurs under the following
circumstances:

e Program execution exceeds the allowed time limit.

e You issue a terminal interrupt.

TABLE 3-2. TRAP TYPES

Trap Type g::;c Condition Esta:;ished CID Gets Control

LINE L Beginning of an executable statement User Before the statement is executed

STORE S Store to memory User After the store

RJ ' RETURN JUMP instruction User Before the call or return is executed
(subprogram call or return)

JUMP J JUMP instruction User Before the jump is executed

FETCH F Fetch from memory User After the fetch

OVERLAY OVL Overlay load User After the overlay is loaded

INTERRUPT INT User interrupt or time limit Default After the interrupt

END E Normal program termination Default After termination

ABORT A Abnormal program termination Default After termination

3-4 60482700 A

If your program exceeds the maximum time limit allowed
by the system, CID gains control and issues an informative
message. Suggested user action when this occurs is
discussed in section 1. :

A terminal interrupt allows you to gain control at any
time during a debug session. A terminal interrupt is
issued by keying %A (NOS/BE), the BREAK key (NOS), or
a) followed by 2 RETURN (NOS IAF). CID issues a trap
message and input prompt, allowing you to enter CID
commands.

When an executing program is interrupted, execution is
suspended at the beginning of a FORTRAN statement.

The. INTERRUPT trap can be used to terminate excessive
output to the terminal, though it will cause the remaining
output to be lost. It can also be used to interrupt a
program that you believe to be looping excessively at
some unknown location.

END Trap

The END trap suspends program execution on normal
program termination. This trap always occurs when a
program terminates normally, regardless of any CID
commands that have been entered to set or clear traps.

The debug session in figure 2-1 illustrates the END trap.
The program runs to completion and CID gains control and
issues the message:

*T #17, ENDINL.5
?

CID permanently assigns the number 17 to the END trap.
In response to the ? prompt you can display program -
variables as they exist at the time of termination or you
can terminate the session by entering QUIT. You cannot
issue a GO or EXECUTE following an END trap.

ABORT Trap

The ABORT trap is extremely useful in that it allows you
to gain interactive control on any abnormal termination of
program execution. The status of program variables can
be examined as they exist at the precise time of
termination. .

To illustrate how the ABORT trap works, an error that
causes abnormal termination is introduced into the
program shown in figure 2-1, and the program is executed
under CID control. The source listing containing the error
and the session log are shown in figure 3-3. The
statement C=(A+B)/(A-B) results in a division by zero.
The variable C is set to an infinite value (represented by
the character R) and when C is used as an operand in the
next statement, the program aborts with a mode 2 error.
CID immediately gains control and issues the trap
message indicating the trap type, number, location, and
the error number. The user enters the LIST,VALUES
command to display the contents of program variables.
Note that in this case, the value of the infinite operand is
represented by the character I. The QUIT command
terminates the session.

The ABORT trap is permanen.tly assigned the ‘number 18
by CID.

Prograrh COMPC:

A=2.9 -
B=2.9

STOP
END

Session Log:

CYBER INTERACTIVE DEBUG
290 -

1 PROGRAM COMPC 74/74

PROGRAM COMPC

C=(A+B)/ (A~B)
5 D=D+1.8

TS ID

Initiate execution.

?print*,a,b,c,d -=

*T $#18, ABORT CPU ERROR EXIT 04 IN L.5

ABORT trap occurs at line 5.

2. 2. R 1=

“Values of program variables.

2quit =

C is out of range and D .is indefinite.

DEBUG TERMINATED

Terminate session.

Figure 3-3. Program COMPC and Debug Session Illustrating ABORT Trap

60482700 A

3-5

USER-ESTABLISHED TRAPS

In addition to the default traps, CID provides traps that
can be established and removed by the user.

SET,TRAP Command

The traps described in the following paragraphs are
established with the SET,TRAP command. The format of
this command is as follows:

SET,TRAP,type,scope

where type is one of the trap types listed in table 3-1 and
scope is the address or range of addresses for which the
trap is effective. The scope parameter has one of the
forms listed in tables 2-1 and 2-2. Not all address
notation forms are valid for all traps; the valid forms for
each trap are stated in the discussion of the trap. For
certain traps, an asterisk (*) can be specified for the
scope parameter, in which case the trap is recognized
throughout the entire program (unlimited - scope).
However, as will be demonstrated, it is not always
practical to specify an unlimited scope. Normally, you
will restrict the scope to a particular program unit.

Traps are typically established at the beginning of a debug
session, although they can be established whenever
execution is suspended and CID has issued a ? prompt. If
a condition for which you have established a trap does not
occur, the program executes normally.

Once you have established a trap, you can subsequently
remove it with the CLEAR,TRAP command discussed
later in this section. Although traps exist only for the
duration of the debug session in which they are
established, you can save trap definitions on a separate
file for use in later sessions with the SAVE command
discussed in section 5.

Following are some examples of the SET,TRAP command:

SET,TRAP,JUMP,P.BIRD
Suspend execution on all branches detected in
program unit BIRD.

SET,TRAP,STORE,C.BLKA
Suspend execution whenever data is stored into a
location in common block BLKA.

SET,TRAP,FETCH,P.SUBX A
Suspend execution whenever data is fetched from
the variable A in subroutine SUBX.

SET, TRAP,LINE,*
Suspend execution immediately before execution
of each line in the user's program.

SET,TRAP,LINE,P.PROGL L.5...P.PROGI L.20
Suspends execution immediately before
execution of each of the source lines 5 through
20 in program unit PROG1.

LINE Trap

The LINE trap gives control to CID immediately prior to
execution of each executable FORTRAN statement within
the specified range. The line trap allows you to examine
and alter program status before each statement is
executed.

3-6

For the scope parameter you can specify an asterisk, in
which case execution is suspended after each FORTRAN
statement in the user program, or you can limit the scope
by specifying one of the address range formats listed. in
table 2-1. For example, the command:

SET,TRAP,LINE,L.5...L.12

sets a LINE trap of lines 5 through 12 of the home
pragram.

To illustrate the LINE trap, the program in figure 3-4 is
executed under CID control. The session log is shown in
figure 3-5. The program consists of a main routine
PROGI1 and a subroutine SETB. The main routine contains
two calls te SETB; SETB stores values into array B
depending on the value of the variable K. The first CID
command sets the LINE trap. The scope parameter
specifies that the trap applies only to the main program.
The trap occurs immediately before each executable
statement. The command is entered after each subroutine
call (execution suspended at lines 6 and 8). The GO
command resumes execution after each suspension. Note
that both the LINE and END traps occur at line 8, the last
executable statement of the program. This illustrates
that more than one trap can occur at the same location.

STORE and FETCH Traps

The STORE trap suspends execution whenever data is.
stored into the program locations specified by the scope
parameter. The FETCH trap suspends execution whenever
data is fetched from the specified locations. Execution is
suspended immediately after the store or fetch is
performed. The STORE trap is especially useful since it
gives you control whenever the specified variable is
modified.

A store instruction is generated whenever a variable name
appears to the left of an equal sign, except as a subscript,
or whenever data is stored as a result of an input
statement. Any other reference to a variable, except in
an argument list, generates a fetch instruction. Some
examples of when a store or fetch occurs are as follows:

READ 10,X,Y store X, store Y

IF(A.LT.B) GO TO 20 fetch A, fetch B
DO 10 I=1,N store I, fetch N
A(D=Z fetch I, fetch Z, store A(I)

The scope parameter is generally specified as a variable
name, as in the command:

SET,TRAP,STORE,X
which sets a STORE trap for the variable X.

To set a STORE or FETCH trap for an entire array, or
part of an array, the ellipsis notation can be used.

60482700 A

1 PROGRAM MAIN

5
1 SUBROUTINE SETB
) 6
8
1

74/74 TS 1D

PROGRAM MAIN
COMMON /BCOM/B(5)
N=5

K=1

CALL SETB(K,N)
K=2

CALL SETB{K,N)
STOP

END

74/74 TS ID

SUBROUTINE SETB(K,N)
COMMON /BCOM/B({(5)
IF(K.EQ.1) GO TO 8
DO 6 I=1,N
B(I)=~1.8

RETURN

po 12 1=}1,N
B(I)=1.9

RETURN

END

Figure 3-4. Subroutine SETB and Main Program

Specifying the array name for the scope parameter sets
the trap only for the first word of the array. For
example, if the statement DIMENSION A(10) appears in
the FORTRAN program, then the command:

SET,TRAP,FETCH,A..:.A+9
sets a FETCH trap that suspends execution whenever data
is fetched from any of the locations A(1) through A(10).
The command:

SET,TRAP,FETCH,A

sets a FETCH trap that suspends execution whenever data
is fetched from A(1).

Variable names can be qualified, as in the command:
SET,TRAP,FETCH,P.ADDB X...P.ADDB X+99

which sets a FETCH trap that suspends execution

whenever data is fetched from any of the locations X(1)

through X(100) in program unit ADDB.

When a common block name is specifed for the scope

parameter, the trap is set for each location in the

common block. For example, the command:

SET,TRAP,STORE,C.BLKX

sets a STORE trap that suspends execution whenever data
is stored into any location in common black BLKX,

To set a trap for a single location within a common block,
specify the block name and a decimal offset as in the
command:

SET,TRAP,STORE,C.BLKX 0

which sets a STORE trap for the first location of BLKX.

60482700 A

It is important to note that the STORE and FETCH traps
suspend execution immediately after the execution of the -
STORE or FETCH. This means that, in the case of the
FETCH trap, the FORTRAN statement that caused the
fetch does not execute to completion prior to suspension.
For example, if the statement A=B+C appears in a source
program and if a FETCH trap is set for the variable B,
then execution is suspended after B is fetched and before
the sum is calculated and stored into A. The function of
the STORE and FETCH traps can be illustrated by
examining the following object code generated by A=B+C:

SAS B fetch B

SA4 C fetch C

SAl CON1

FX0o X4+X5 sum operands
NX7 B0,X0

SA7 A store A

By setting a STORE trap for A and FETCH traps for B and
C, execution would suspend three times while executing
these instructions.

A common bug in a FORTRAN program is a subroutine
call with too few parameters. If a program contains many
subroutine calls, a good trap to set is SET,TRAP,STORE,0,
and SET,TRAP,FETCH,0. These traps will occur when a
reference is made within the subroutine to the formal
variable corresponding to the first missing parameter. An
example of this type of error is illustrated at the end of
the section.

An example of a debug session using the STORE and
FETCH traps is illustrated in figure 3-6. The program in
figure 3-4 is executed under CID control to produce this
session log. Both the STORE and FETCH traps are set so
that CID sets control whenever data is stored into or
fetched from common block BCOM. Execution is
subsequently suspended on each pass through the DO loop

3-7

CYBER INTERACTIVE DEBUG
?set ,trap,line,p.main-=

790 —-=

*T $1, LINE AT L.3
?print*,n

A2 232 22222222222 2]

?g0

*T $1, LINE AT L.4
?g90

*T #1, LINE AT L.5
?print*,n,k

51
?q90

*T #1, LINE AT L.6
?print*,b

1. 1. 1. 1. 1.
790

*T #1, LINE AT L.7
?print* K

2
790

*T #1, LINE AT L.8
?print*,b

-1, =1. =1. =1, =1.
?go '

*T #17, END IN L.8-=

2quit
STOP
.782 CP SECONDS EXECUTION TIME

DEBUG TERMINATED

Set LINE trap in PROG1.

Initiate execution.

LINE trap suspends execution at lines 3 through 8. After each
suspension, selected values are displayed and execution is
resumed. Undefined variables contain meaningless values.

END trap occurs at line 8.
Terminate session.

Figure 3-5. Debug Session Illustrating LINE Trap

as the constant is stored into the five locations of the
array B in common block BCOM. The FETCH trap does
not occur since data is not fetched from locations in
BCOM anywhere in the program.

JUMP Trap

The JUMP trap suspends program execution immediately
prior to the execution of a jump instruction. The JUMP
trap can be useful in tracing the flow of execution in
programs that contain many branches. However, jump
instructions are often generated by FORTRAN statements
other than the normal branch statements, which can result
in many unexpected suspensions of execution. In addition,
the JUMP trap requires the much slower interpretive
execution. For these reasons, it is usually better to
substitute breakpoints for a JUMP trap.

3-8

Jump instructions are generated by the following
statements:

e Unconditional branch (GO TO n)

e Arithmetic IF statement (IF(expr)n),ng,n3)

e Logical IF statement (IF(expr)GO TO n)

e DO loop repetition

The JUMP trap gives control to CID whenever any of the

above program branches are detected. Note that for a

logical IF statement, the trap occurs only if the logical
expression is true. The JUMP trap does not detect
function and subroutine calls.

The scope of a JUMP trap should always be restricted to a
particular subprogram or main program. If * is specified

60482700 A

CYBER INTERACTIVE DEBUG
?set,trap,store,c.bCOM g

Set STORE trap for common block BCOM.

INTERPRET MODE TURNED ON
?set, trap,fetch.c.bcom

Set FETCH trap for common block BCOM.

Initiate execution.

290 ==

2go

*T #1, STORE INTO B+l IN L.8

*T #1, STORE INTO B IN P.SETB_L.8 —«——— STORE trap occurs on store into B(1).

?go

*T #1, STORE INTO B+2 IN L.8-=

STORE trap occurs on store into B(2).

2go .

STORE trap occurs on store into B(3).

*T $1, STORE INTO B+3 IN L.8-w
2go

*T #1, STORE INTO B+4 IN L.8-=

STORE trap occurs on store into B(4).

2quit —--

STORE trap occurs on store into B(5).
Terminate session.

DEBUG TERMINATED

Figure 3-6. Debug Session Illustrating STORE and FETCH Traps

for the scope parameter, indicting unrestricted scope,
then a trap is set at every jump instruction in the entire
program including those in system and library routines.
This results in many extraneous suspensions of execution.
By specifying a particular routine name for the scope
parameter, the range of addresses over which the trap is
effective is limited to that routine. For example, the
command:

SET,TRAP,JUMP,P.CAT

sets a jump trap that suspends execution at all jumps
occurring in program unit CAT. -

The scope parameter can also be specified as a range of
source lines as in the command:

SET,TRAP,JUMP,P.DOGL.4...P.DOGL.20

which sets a JUMP trap that suspends execution at all
jumps occurring in lines 4 through 20 in program unit DOG.

The JUMP trap can be useful for debugging DO loops since
you get control on each pass through the loop. Execution
is suspended at the end of the loop immediately after
execution of the last statement but before the jump to the
beginning of the loop. For example, if the following loop
is located within the scope of a JUMP trap:

DO 10 11,100
XNEW=XNEW.+X(I)
10 CONTINUE

then execution is suspended at the statement labeled 10
on each pass through the loop, allowing the current value
of XNEW to be examined. If many passes are made
through the loop, however, you should consider setting a
breakpoint at the statement, instead of using a JUMP
trap. Breakpoints provide the option of suspending
execution on each pass though the loop or at specified
intervals, and breakpoints do not require interpret mode.

60482700 A

A program and debug session illustrating the JUMP trap
are shown in figure 3-7. Program TESTJ reads a single
integer, tests the integer, and sets a variable A depending
on the value of the integer. The SET,TRAP command
establishes a JUMP trap in TESTJ. The scope of the trap
is restricted to TESTJ so that execution will not be
suspended on jumps occurring outside TESTJ. The trap
occurs at lines 4, 11, and 15. After the first occurrence,
the PRINT command displays the value of the input
variable J. Note that the default END trap also occurs at
line 15. ‘

RJ Trap

The RJ trap gives control to CID whenever a return jump
instruction is detected within the specified range. Return
jumps are generated by subroutine calls, function
references, and RETURN statements within a user
program. Return jumps can also be generated by other
FORTRAN statements, such as I/O statements, which
cause the compiler to produce calls to external routines
supplied by system libraries. An RJ trap causes execution
to be suspended immediately before the return jump is
executed.

The RJ trap can be useful for debugging programs that
contain many subroutine calls. However, a FORTRAN
program can contain many hidden return jump
instructions, resulting in needless suspensions of
execution. In addition, the RJ trap causes interpretive
execution, a much slower mode of execution (described at
the end of this section). In most cases, it is probably
better to use breakpoints rather than an RJ trap.

The scope parameter is generally specified as one of the
range formats shown in table 2-2. For example,

SET,TRAP,RJ,P.SUBR

sets an RJ trap that suspends execution at all return jump
instructions occuring within program unit SUBR.

3-9

Program TESTJ:

1 PROGRAM TESTJ

5
5
10
10
20
36
15
40

Session Log:

CYBER INTERACTIVE DEBUG

74/74

PROGRAM TESTJ (INPUT,OUTPUT)

WRITE*," ** »
READ*, J

IF(J.EQ.1) GO TO 18
IF(J.EQ.2) GO TO 28
IF(J.EQ.3) GO TO 38

STOP
A=1.0
B=0.0

GO TO 48

A=2.90
B=1.0

GO TO 486

A=3.0
B=2.0
C=A+B
GO TO 5
END

?set,trap,jump,p.test]j ==
INTERPRET MODE TURNED ON

290 =

" '{n-}A
3

*T #1, JUMP IN L.6 =

290

*T $1, JUMP AT L.17 -
?print*,j,a,b,c

3 3. 2. 5.
2g0 .

" kR g

*T #1, JUMP AT L.7 =

?2go

*T $#17, END IN L.7
?
STOP

9.452 CP SECONDS EXECUTION TIME

quit

DEBUG TERMINATED

Set JUMP trap in main program.

Initiate execution.
Program writes input prompt.
User enters input data.

JUMP trap at line 6, IF statement.

JUMP trap at line 17, GOTO statement.

Hidden jump at line 7, STOP statement.

3-10

-Figure 3-7. Program TE;STJ and Debug Session Illustrating JUMP Trap

60482700 A

It is important to note that the RJ trap suspends
execution at all return jumps occurring within the
specified range. In addition to user-specified CALL
statements, RETURN statements, and - function
references, execution is suspended at any FORTRAN
statement that produces a call to a system library routine
at compile time. FORTRAN statements producing return
jumps include:

READ BUFFEROUT
WRITE PRINT
ENCODE PUNCH
DECODE REWIND
BUFFERIN ENDFILE
BACKSPACE

The RJ trap does not suspend ‘execution at statement
function references or at references to intrinsic functions
since these do not generate return jump instructions.

If * is specified for the scope parameter, indicating
unlimited scope, the trap is established not only in the
user program, but in all system library routines included in
the user field length as well. Since this can result in many
unnecessary suspensions of execution, you should not use
the * form when setting an RJ trap.

The RJ trap can be useful for checking input to and output
from subroutines, as illustrated by the debug session
shown in figure 3-8. This session was produced by
executing the program shown in figure 3-4 in debug
mode. Two SET,TRAP commands are issued: one for the
main program PROGI1 and one for subroutine SETB. The
first trap suspends execution at each call to SETB and on
initial entry into the main program. The second trap
suspends execution at the RETURN statements in SETB.
The PRINT command is entered after each trap
occurrence to display the values passed to SETB and to
display the values stored into the array B by SETB.

REMOVING TRAPS

A user-defined trap can be removed at any time during a
debug session with the CLEAR,TRAP command. This
command has the following forms:

CLEAR,TRAP .
Remove all user-defined traps.

CLEAR,TRAP,type,scope :
Remove the traps of the specified type
established within the specified scope.

CYBER INTERACTIVE DEBUG

?set.t:ap,rj,p.main

INTERPRET MODE TURNED ON

Set RJ trap in MAIN.

?set,trap,rj.p.setb —=—

Set RJ trap in SETB.

290 —==

Initiate execution.

Hidden return jump on initial entry into main program.

*P $1, R} IN L. —=
?go

*T $1, RJ IN L.5 -=
?print*,n,k

51
?go

Trap occurs at line 5 of main program.

RJ trap at line 10 of SETB.

*T $2, RJ IN P.SETB_L.19 =
?print*,b

1. 1. 1. 1. 1.
290

RJ trap at line 7 of MAIN.

*T $1, RJ IN P.MAIN_L.7-=
?print*,k

2
?go

RJ trap at line 6 of SETB.

*T #2, RJ IN P.SETB_L.6 =
?print*,b

=-l. =1. =1. =1. ~1.
?go

*T $17, END IN P.MAIN L.8
?
STOP
.568 CP SECONDS EXECUTION TIME
quit

DEBUG TERMINATED

Figure 3-8. Debug Session Ilustrating RJ Trap

60482700 A

3-11

CLEAR,TRAP,type
Remove all traps of the specified type.

CLEAR,TRAPR,#n,#n2,...
Remove the traps identified by the specified
numbers.

The type parameter can be any of the types listed in
table 3-1 except for the default INTERRUPT, END, and
ABORT traps, which cannot be removed. The scope
parameter is the same as for the SET,TRAP command
(tables 2-1 and 2-2). An asterisk (¥) can be specified for
type or scope. If * is specified for type, all trap types are
cleared; if * is specified for scope, unlimited scope is
indicated.

The CLEAR,TRAP command can be used to remove traps
that are no longer needed in a debug session. The
command is also useful when editing command sequences,
as discussed in section 5. Following are some examples of
the CLEAR, TRAP command:

CLEAR,TRAP,RJ,P.GAUSS
Clear the RJ trap from program unit GAUSS.

CLEAR,TRAP,STORE,P.SUBX A
Clear the STORE trap at the variable A,

CLEAR,TRAP,*,t.10... L.100
Clear all traps defined for source lines 10
through 100 of the home program.

CLEAR,TRAP,JUMP
Clear all JUMP traps.

CLEAR,TRAP,#2,#4,#5
Clear the traps identified by trap numbers 2, 4,
and 5.

A session log using the CLEAR,TRAP command is
illustrated in figure 3-9. The session in figure 3-8 is
duplicated except that the CLEAR,TRAP command is
issued after the third pass through the loop, allowing the
program to run to completion without interruption. Note
that the default END trap is not removed by the
CLEAR,TRAP command.

INTERPRET MODE

The RJ, JUMP, FETCH, and STORE traps require a mode
of execution called interpret- mode. In interpret mode,
each machine instruction is simulated by an interpreter
routine. Interpret mode is automatically activated when
any of the preceding traps are established. Interpret
mode remains on until all of these traps are cleared by a
CLEAR,TRAP command or until explicitly turned off.
CID indicates interpret mode by issuing the message:

INTERPRET MODE TURNED ON

Execution in interpret mode requires up to 50 times as
much time as normal execution. When using traps that
require interpret mode, you can reduce the amount of
execution time required by turning interpret mode off
when executing portions of the program not currently
being debugged. Interpret mode is turned off by the .
command: .

SET,INTERPRET,OFF.
Traps requiring interpret mode become inoperative if
interpret mode is turned off. They can be reactivated by

the command:

SET,INTERPRET,ON

CYBER INTERACTIVE DEBUG
?set,trap,store,c.bcom =

INTERPRET MODE TURNED ON
290

*T #1, STORE INTO B IN P.SETB L.8
?g0

*T #1, STORE INTO B+l IN L.8 —~——

?2go

*T #1, STORE INTO B+2 IN L.8
?clear,trap,store

INTERPRET MODE TURNED OFF
290 ~-=

*T $17, END IN P.MAIN L.8
?

STOP
.345 CP SECONDS EXECUTION TIME

?2quit

DEBUG TERMINATED

Set STORE trap for common block BCOM.

STORE trap occurs on first three passes through loop. Execution
is resumed after each suspension.

Remove trap after third pass through loop.

Resume execution.

Figure 3-9. Debug Session Illustrating CLEAR,TRAP Command

3-12

60482700 A

The use of the SET,INTERPRET command is illustrated by
the debug session shown in figure 3-10. The program
shown in figure 3-4 is executed in debug mode to produce
this session. In this example, a STORE trap, which
activates interpret mode, is established for the variable K
in the main program. Interpret mode is then turned off
while subroutine SETB is executing. To accomplish this,
breakpoints are set at the beginning and at the end of the
subroutine. When execution is suspended at the first
breakpoint, interpret mode is turned off; when execution
is suspended at the second breakpoint, interpret mode is
turned back on, reactivating the STORE trap.

This method of turning off interpret mode is rather
cumbersome since it is necessary to enter the
SET,INTERPRET commands on each pass through the
subroutine. This could be accomplished more efficiently
by including the SET,INTERPRET commands in a
command sequence so that they could be executed
automatically. Command sequences are discussed in
section 5.

SUMMARY OF TRAP AND BREAKPOINT
CHARACTERISTICS.

The following is a summary of trap and breakpoint
information presented in this section:

e You can set or clear traps or breakpoints any time
CID has control and has prompted for user input.

e Only one breakpoint can be established at a single
statement; however, a single breakpoint and multiple
traps can be set to occur at a single statement.

Traps and breakpoints exist for the duration of the
debug session, unless removed by the CLEAR
command or inhibited by the SET,INTERPRET,OFF
command before the session is terminated.

The frequency parameters of the SET,BREAKPOINT
command can be used to avoid suspending execution
on each pass through a loop.

CID provides END, ABORT, and INTERRUPT traps by
default so that CID receives control on any program
termination, even if you have not explicitly
established any traps or breakpoints.

Breakpoints suspend execution before the statement
at the breakpoint location is executed. The point in
the execution of a statement at which a trap suspends
execution depends on the trap type. The statement
at the trap or breakpoint location is executed in a
normal manner.

The RJ, JUMP, FETCH, and STORE traps activate
INTERPRET mode, which increases execution time by
as much as 50 times. To reduce execution time,
specify the SET,INTERPRET,OFF command when
executing portions of the program already debugged,
or substitute breakpoints for these traps.

When setting a JUMP or RJ trap, always specify a
range for the scope parameter to avoid suspending
execution on jump or return jump instructions
occurring outside your program.

CYBER INTERACTIVE DEBUG
?set,trap,store,k

INTERPRET MODE TURNED ON

?set,breakpoint,p.setb_1.3-=

?set,breakpoint,p.setb_1.6 l

?set,breakpoint,p.setb_1.9 ‘
?go

*T #1, STORE INTO K IN L.4
2go

*B #1, AT P.SETB_L.3-=

?set,interpret,off —=

?g0

*B §3, AT P.SETB_L.9—=

?set,interpret,on —=
?go

*T $#1, STORE INTO K IN P.MAIN_L.6
?print* , k .

2
?2quit

DEBUG TERMINATED

Set STORE trap for variable K in main program.

Set breakpoint at first executable statement of SETB

Set breakpoint at each RETURN statement.

Breakpoint detected at line 3 of SETB.
Turn off interpret mode.

Breakpoint detected at line 9.
Turn on interpret mode.

Figure 3-10. Debug Session Illustrating SET,INTERPRET Command

60482700 A

3-13

DISPLAYING PROGRAM VARIABLES

When execution of your object program is suspended and
CID has prompted for user input, you can enter commands
to display the contents of program variables as they exist
at the time of suspension. This discussion includes those
forms of the display commands that are most useful to the
FORTRAN programmer.

CID provides three commands for displaying the values of
program variables: the LIST,VALUES command; the
PRINT command; and the DISPLAY command. These
commands are summarized in table 3-3.

LIST,VALUES COMMAND

The LIST,VALUES command alphabetically lists all
variables defined in the source program and the current
value of each. This command automatically formats the
variables according to the variable type as declared in the
source program. The command has the following forms:

LIST,VALUES
List all variables and values defined in all
program units, including arrays in their entirety.

LIST,VALUES,P.namey,P.namey, . . .
List all variables and values defined in the
specified program units.

The LIST,VALUES command can generate a large amount
of output. In these cases, you can send the output to an
auxiliary file (section 4) or use an alternate display
command. It is generally more useful to PRINT or
DISPLAY the values of specific variables.

An example of LIST,VALUES output is illustrated in
figure 3-11. The program in figure 3-1 was executed in
debug mode to produce this output. Execution is
suspended at the CALL statement in the main program
and at the RETURN statement in subroutine AREA, and a
LIST,VALUES commands aré issued. The symbol -I
displayed as the value of the variable A indicates an
indefinite value. (The value assigned to an initialized
variable is determined by the installation.) This should be
investigated, as it could be due to an initialization error.
However, in this example, the indefinite occurs because
the statement that stores a value into A has not yet been
executed. The session is terminated after one pass
through AREA.

TABLE 3-3. DISPLAY COMMANDS

Command Description Formatting Scope
LIST,VALUES Lists alphabetically all Automatic according to Specified program unit; entire
variable names and values variable type. program if nomne specified.
within specified scope.
PRINT Displays contents of Automatic according to Home program only.
specified variables. variable type.
DISPLAY Displays contents of User-specified; default is Default is home program;
specified variable. variable type. variables can be qualified for
other than home program.

CYBER INTERACTIVE DEBUG
?set ,breakpoint,1.5

?set,breakpoint,p.area_1.8
2go

*B #1, AT L.5 -

Execution suspended at line 5 of main program.

?list,values,p.rdtr-=

P.RDTR
A=-I, X1 =0.0, X2-=.5,
¥3 = 1.2

X3 = ~1.0,

Yl =1.0, Y2 = 2.0

Display variables in main program.

?go

A value has not yet been stored into A.

*B $#2, AT P.AREA_L.8—=

Execution suspended at line 8 of AREA.

?list,values,p.areca-=

P.AREA

A = .54999999999999, S1 = 1.1180339887499, S§2 = 1.6198839827186
s3 = 1.7, T = 1.9189189457342, Xl = 0.9, X2 = .5, X3 = ~1.9
Yl = 1.6, Y2 = 2.9, Y3 =1.2

2quit —- Terminate session.

Display variables in AREA.

DEBUG TERMINATED

Figure 3-11. Debug Session Illustrating LIST,VALUES Command

3-14

60482700 A

PRINT COMMAND

The PRINT command, introduced in section 2, is the most
useful of the display commands for the FORTRAN
programmer. This command is identical in format and
function to the FORTRAN Extended list directed PRINT
statement. The format is:

PRINT*,list

List elements must be separated by commas and can
consist of any of the following:

Simple or subscripted variables
Array names
Constants

FORTRAN expressions not involving exponentiation
or functions

Implied DO loops enclosed in parentheses

Qualified address forms cannot be used with the PRINT
command. Except for variables declared in common, the
PRINT command can only display variables local to the
home program. To display variables belonging to another
program unit you must designate a new home program
with the SET,HOME command.

To print the contents of an array you can use the
FORTRAN implied DO statement or you can simply
specify the array name. For example, if the statement
DIMENSION A(10) appears in the source program then the
CID commands:

PRINT*,A
and
PRINT*,(A(I),I=1,10)

are equivalent. It should be noted, however, that in the
case of multidimensioned arrays, specification of the
array name causes the elements to be displayed in column
order (the order in which they are stored), while the
implied DO from can be used to specify a row-order

display.

If the implied DO form is used, CID issues a warning
message if the index exceeds the dimensioned boundaries
of the array. The variable used as the index in the implied
DO does not alter a variable of the same name used in the
FORTRAN program.

The PRINT command automatically formats each variable
according to its type as declared in the source program.
To display variables in a format other than that declared
in the source program you must use the DISPLAY
command.

A session log illustrating the PRINT command is shown in
figure 3-12. Execution of subroutine SETB (figure 3-4) is
suspended at lines 6 and 9 by a breakpoint. The PRINT
command displays the contents of the array B, the
contents of the variables N and K, and the value of 3*K,

DISPLAY COMMAND

The DISPLAY command displays the contents of specified
locations within a program. In most cases, you will be
using the PRINT command since it provides for automatic
formatting of variables and is more familiar to FORTRAN
programmers. The DISPLAY command, however, offers
the following advantages:

e DISPLAY can display values belonging to any program
unit, while PRINT can only list values local to the
home program.

e DISPLAY allows you to specify the format of each
variable, while PRINT performs automatic
formatting. In most cases, automatic formatting is
more convenient. However, the PRINT command
cannot display character data. You can do this with
DISPLAY by specifying character format. In
addition, DISPLAY allows you to examine data in its
internal representation by specifying octal format.

e DISPLAY is the only command that can display the

contents of debug variables. (See section 4.)

CYBER INTERACTIVE DEBUG
?set,breakpoint,p.setb_l1.6

?set ,breakpoint,p.setb_1.9
290

*B #2, AT P.SETB L.9

?print*,"values are “,(b(i),i=1,n),n,k, 3*K ~s—————— Print specified values while execution is suspended

VALUES ARE 1. 1. 1. 1. 1. 51 3
2go

*B §1, AT P.SETB_L.6
?print*,"b = “,b," kK = ",k

at line 9 of SETB.

B==l. -1. =1. =1. =1. K =2
?2quit

DEBUG TERMINATED

Print specified values while execution is suspended
at line 6 of SETB.

Figure 3-12. Debug Session Illustrating PRINT Command

60482700 A

3-15

DISPLAY can be used to display the contents of any
program location, although you will usually use it to

displa{ the contents of program variables. The format of
the DISPLAY command is:

DISPLAY,location,format,count

location Can be any of the formats listed in
tables 2-1 and 2-2.
format Optional format designator; valid values
are as follows:
F Floating point
D Double precision floating point
I Integer
C Character
O Octal
A Symbolic address (L.n or S.n)
Default is variable type as declared in
the program.
count Optional integer specifying the number

of consecutive locations to display;
default is 1.

A major disadvantage of the DISPLAY command is that a
list of variables cannot be specified. For example, to
display the contents of the variables A, B, and C requires
the three DISPLAY commands:

DISPLAY,A
DISPLAY,B
DISPLAY,C

However, this can be accomplished with the single PRINT
command:

PRINT*,A,B,C

Unlike the PRINT command, the DISPLAY command
displays only the first word when an array name is
specified. To display the contents of an array you must
either use ellipsis notation to specify a range or specify
the count parameter. For example, if the statement
DIMENSION A(10) appears in the source program, then the
commands:

DISPLAY,A...A+9
DISPLAY,A, , 10

are equivalent; both display the values of all 10 words
of A.

Since the DISPLAY command automatically formats
variables, it is necessary to specify the format parameter
only when you want to display the variable in a format
other than that declared in the FORTRAN program.

Figure 3-13 illustrates a program and a debug session in
which the DISPLAY command is used to display character
data. The program reads records containing a person's
name and the state in which he lives. After each record is
read, the state name is tested; if it is California, the
person's name is printed. The program then reads the next
record. When a ZZZ7 is detected as the first word of a
record, the program terminates.

3-16

In the debug session, a breakpoint is initially set at line 7
to suspend execution after each record is read. After
each suspension the DISPLAY command is used to display
the values of the input variables in character format.
Note that the PRINT command, issued after the first
read, converts the values to type integer.

Figure 3-14 illustrates a program and debug session in
which the DISPLAY command is used to examine variables
in their internal representation. The program reads
groups of four integers from the terminal and packs each
group into a single word using the SHIF T function and OR
operator. Each packed integer occupies a 15-bit field.
The program is executed under CID control and allowed to
terminate after three sets of integers have been input.
When the END trap gives control to .CID, the DISPLAY
command is used to display the first three words of the
array IPACK in octal format showing the four 15-bit
fields of each word. The PRINT command cannot be used
since each word of IPACK would be automatically
formatted as a decimal integer.

ALTERING PROGRAM VALUES

CID provides several commands to alter the contents of
program locations, Although these commands can be used
to change the contents of any location within the program
field length, as a FORTRAN programmer you will usually
be concerned only with changing the contents of variables.

CID provides three commands for altering program values:

e Assignment command. This command is identical to
the FORTRAN assignment statement. It allows you
to evaluate expressions and to insert values into
variables in the home program.

e ENTER command. The function of this command is
similar to the assignment command; however, it is
less powerful than the assignment command and is
therefore seldom used by FORTRAN programmers.

e MOVE command. This command can be used to move
data from one program unit to another.

Since the assignment command largely precludes the need
for the ENTER command, ENTER is not discussed here.
Refer to the CYBER Interactive CID reference manual
for details on the ENTER command.

ASSIGNMENT COMMAND

The assignment command is identical in form and function
to the FORTRAN assignment statement. This command
allows you to make corrections to your program as
execution proceeds, eliminating the need for recompiling
each time an error is discovered. The assignment
command has the form:

var=expression

where var is .a simple or subscripted variable and
expression is any valid FORTRAN arithmetic expression
not involving functions or exponentiation. The assignment
command functions exactly as in FORTRAN: - The
expression is evaluated and its value is assigned to the
variable on the left of the equal sign; the previous
contents of the receiving variable are destroyed. You can
enter an assignment command whenever CID has
prompted for user input. For example, if program
execution is suspended and you have detected a variable
that has an incorrect or illegal value, you can use the

60482700 A

Program CHAR:

1 PROGRAM CHAR

200

5 19
300
10 409

{nput Data:

FIDDLE ca
BIDDLE NY
GRIDDLE CALIF
DIDDLE WASH
2222

Session Log:

CYBER INTERACTIVE DEBUG
?set,breakpoint,1.7

?go -
OUTPUT

*B #1, AT L.7
?print* ,name,istate

?display,name,c

NAME = FIDDLE ‘

73/74 TS ID

PROGRAM CHAR(INFILE,TAPE2=INFILE,OUTPUT)

REWIND 2
WRITE 200

FORMAT (" OUTPUT",////)
READ (2,300) NAME,ISTATE

FORMAT (Al10,A2)

IF (NAME.EQ.4HZZ22) STOP
IF(ISTATE.NE.2HCA) GO TO 190

WRITE 400 ,NAME
FORMAT (" ",AlD)
GO TO 19

END

116637545892010861 54525724659949933 -

?display.,istate,c

ISTATE = CA)
?2go \

FIDDLE
*B #1, AT L.7
?display.name,c

NAME = BIDDLE
?display,istate,c

ISTATE = NY
?quit /

DEBUG TERMINATED

PRINT command formats according to variable type.

Display NAME and ISTATE in character format.

Read another input record, display input values, and
terminate session.

Figure 3-13. Program CHAR, Input File, and Debug Session Illustrating DISPLAY Command

60482700 A

3-17

N=1
4 WRITE 109

300 FORMAT (413)

l¢ X
N=N+1

GO TO 4
END

CYBER INTERACTIVE DEBUG
?go
INTEGERS? 4 8 12 1

INTEGERS? 25 6 14 31

1 PROGRAM PAK 74/74 TS ID

PROGRAM PAK (INPUT,OUTPUT)
DIMENSION IPACK(10),I(4)

FORMAT (" INTEGERS? ")
READ 300, (I(J).J=1,4)

IF (I(1).EQ.999) STOP

IPACK(N)=SHIFT(I(4) ,45) .OR.SHIFT(I(3) ,39).0R.
SHIFT(I(2),15) .0R.I(1)

IF(N.GE.10) STOP

INTEGERS? 18 14 7 1@

INTEGERS?999

*T $#17, END IN L.8
?
STOP
.182 CP SECONDS EXECUTION TIME

Display three words of array IPACK in octal format,

display,ipack,0,3 =

IPACK = 00001 00014 00010 00004 00037
" +2 = 00012 00007 00816 00022

?2quit

DEBUG TERMINATED

‘showing packed integers.
pO0d16 200686 00031

Input three sets of integers and an end-of-input indicator.

END trap occurs on program termination.

Figure 3-14. Program PAK and Debug Session Illustrating DISPLAY Command

assignment command to assign a new value to the
variable. When you resume execution of the program, the
new value is used in subsequent computations involving
the altered variable.

Expressions used in assignment commands can be any valid
FORTRAN expression with the exception of function
references and exponentiation. Any valid FORTRAN
constant can appear in an expression. The assignment
command performs all conversions according to the rules
of FORTRAN. An assignment command cannot span more
than one line. :

The variables used in an assignment command must all be
defined in the home program. To reference variables in
another program unit you must specify the SET,HOME
command to designate that program unit as the home
“program. Just as with FORTRAN, variables are local to
the program unit in which they are defined and cannot be
mixed in an assignment command with variables local to
another program unit.

Changes made through the assignment command do not
exist beyond the end of the debug session. When a
program is reexecuted, either in debug mode or in normal
mode, all program variables have the values defined in the
original compiled version.

3-18

Following are some examples of assighment commands:

A=B
Replace the current contents of A by the current
contents of B.

M=N+I-1
Evaluate the expression using the current
contents of N and I and assign the value to M.

ARRM=XI*X(1)+4./3.*(Y+Z)*2.
Evaluate the expression using the current values
of X, I, Y, and Z and assign the value to the Ith
word of ARR.

The sample program shown in figure 3-15 is executed
under CID control to illustrate the assignment command.
The program calculates the mean of 10 numbers. The
program contains a bug: the statement AV=SUM*10.0
should be AV=SUM/10.0.

To enable the program to execute correctly, a breakpoint
is set at the WRITE statement. When execution is
suspended at this location, the program has already
calculated an incorrect value for AV. The assignment
command is then used to calculate the correct value of
AV. The new value is used in the subsequent WRITE

60482700 A

Program AVG:

1 PROGRAM AVG 74/74

5 SUM=0.0

12 CONTINUE
AV=SUM*14.0

STOP
END

Session Log:

CYBER INTERACTIVE DEBUG
?set ,breakpoint,1.18

TS ID

PROGRAM AVG(OUTPUT)

DIMENSION X(19)

DATA X/1.0,15.3,2.4,12.7,6.0,
* 5.5,10.1,9.4,4.8,2.8/

DO 12 1I=1,1¢
SUM=SUM+X(I)

10 WRITE 106, (X(I),I=1,10),AV
100 FORMAT (" NUMBERS: “,10F5.2.,/" MEAN: “,F5.2)

290

*B #1, AT L.19
?print*,av

691.99999999999
2av=sum/10 .0 =

?print* ,av

6.9199999999999
?2go

NUMBERS: 1.0015.30 2.4012.70 6.09 5.5010.10 9.40 4.80 2.09

MEAN: 6.92-=

*T #17, END IN L.12
?

STOP
.251 CP SECONDS EXECUTION TIME
quit

DEBUG TERMINATED

Set breakpoint to suspend execution at WRITE statement.

Print value of AV calculated in the program.

Calculate correct value for AV.

Program writes correct value.

Figure 3-15. Program AVG and Debug Sessions Illustrating Assignment Command

statement when execution is resumed. The erroneous
statement will be replaced by the user in the final version
of the source program.

Some additional examples of assignment commands are
illustrated in the examples at the end of this section.

CONDITIONAL EXECUTION OF ASSIGNMENT
COMMANDS

The IF command allows for conditional execution of a CID
command. It is identical in form and function to the

60482700 A

standard form of the FORTRAN logical IF statement.
The IF command has the form:

IF(expr) command
expr Any valid FORTRAN conditional
expression not involving functions or
- exponentiation.
command Any valid CID command.

If the conditional expression is true, the CID command is
executed.

3-19

The IF command is extremely powerful when used in
command sequences. (See section 5.) However, the IF
command can also be useful in interactive mode, as
illustrated by the following example. Consider the
program segment:

READ 100,A,B,C,Y
X=Y/(A+B-C*2.0)

If the denominator has a value of zero, an illegal operand
is generated. Abnormal termination can be prevented
during the debug session by testing the denominator and
assigning X an arbitrary value if the denominator is zero.
This can be done by setting a breakpoint at the statement
immediately following the computation of X and, when
the breakpoint is reached during execution, entering the
command:

IF(A+B-C*2.0 .EQ.0.) X=1.0

The infinite value generated for X is replaced by 1.0, and
the program will not abort when X is used as an operand in
subsequent computations.

MOVE COMMAND

The MOVE command moves data from one location to
another. In most cases, you will use the assignment
command to alter the contents of program variables
(insert or move data). However, the MOVE command
facilitates the moving of blocks of -data., In addition,
MOVE is the only command that can move data between
program units. The forms of the MOVE command are:

MOVE,rangej,rangez

Move a block of data from rangej to rangej.
Range,, must be one of the range specifications
listed in table 2-2, other than a program unit
name. If range; is greater than rangep, only
enough data is moved to fill rangey. If range; is
greater than rangej, the block of data in range;
is moved repeatedly until range; is filled.

MOVE, address] ,addressz,n
Move n data items from consecutive locations
starting at address; to consecutive locations
starting at addressp. If n is omitted, the default
is 1.

The range parameters are usually specified using ellipsfs
notation. For example,

MOVE,A...A+9,B...B+9

moves ten consecutive words from locations starting at A
to locations starting at B.

The MOVE command is useful for moving data between
arrays and between common blocks. Arrays can be in
different program units.

The following examples assume a program containing
common blocks ACOM and BCOM, and subroutines named
SUBA and SUBC; SUBA contains the statements
DIMENSION A(100) and DIMENSION B(100); SUBC
contains the statement DIMENSION C(100).

MOVE,A,B

Move the contents of the first word of A to the
first word of B.

3-20

MOVE,A,B,100]
Move the contents of A to corresponding
locations in B.

MOVE,A... A+99,B ... B+99]
Move the contents of A to corresponding
locations in B.

MOVE,A...A+1,B...B+6

The results of this move are as follows:
Contents of Moved to

A1) B(1)

A(2) B(2)

A1) - B(3)

A(2) B(4)

- A1) B(5)

A(2) B(6)

MOVE,P.SUBA A,P.SUBC C.20
Move the contents of the first 20 locations of A .
to the corresponding locations of C.

MOVE,A+2...A+5,B...B+3
Move the contents of A(3) through A(6) to B(1)
through B(4).

MOVE,C.ACOM,C.BCOM,10
Move the contents of the first 10 locations of
ACOM to the first 10 locations of BCOM, ’

DEBUGGING EXAMPLES

The following paragraphs present some examples of
interactive debugging using the commands discussed in
this section.

SAMPLE PROGRAM CORR

The program entitled CORR reads pairs of numbers and
calculates the correlation coefficient of the numbers.
The source listing is shown in figure 3-16.

The correlation coefficient is a means of measuring the
degree of statistical correlation between two sets of
numbers. The formula for the correlation coefficient is:

r= NEXY-SXZy

VRzx2(Z 2 Vnzy2«(z y?2

r correlation coefficient
n number of pairs to be correlated
XyY values to be correlated

The correlation coefficient can have any value between -1
and 1. A coefficient with magnitude close to 1 indicates
close correlation.

The program in figure 3-16 contains a number of bugs. It
is assumed that the programmer has performed a visual
scan of the program and is ready to attempt an execution.

To execute the program, some test data is required. If
possible, test cases should be included for which results
are known. In the example, the first test case consists of
pairs of equal numbers; if the program is correct it should
calculate a correlation coefficient of 1.0.

60482700 A

PROGRAM CORR 74/74 TS 1D

PROGRAM CORR(OUTPUT,CORFIL,TAPE2=CORFIL)
DIMENSION X(5),Y(5)

C
C...INITIALIZATION
5 C
N=1
SUMX=0¢.0
SUMY=9.¢
SUMXS0=98.9
19 SUMXY=0.9
c .
C...KEAD NUMBERS TO BE CORRELATED
C
REWIND 2

15 19 - READ(2.%*) X(N) ,Y(N)
IF(EOF(2) .NE.d) GO TO 2@
N=N+1
GO TO 18

C
24 C...CALCULATE CORRELATION COEFFICIENT
C
28 IF(N.EOQ.8) GO TO 596
DO 34 I=1.N
SUMX=SUMX+X(1I)

25 SUMY=SUMY+Y(I)
SUMXSO=SUMXSO+X (I) **2
SUMYSQ=SUMYSQ+Y (1) **2
SUMXY=X(I)+Y(I)

39 CONTINUE

39 NUM= (N*SUMXY~SUMX*SUMY) **2
DENOM= (N*SUMXSQ~-SUMX**2) * (N*SUMYSO~-SUMY**2)
RSQ=NUM/DENOM
R=SQRT (RSQ)

WRITE 808 .R
35 800 FORMAT(" CORRELATION COEFFICIENT IS ",F6.2)
STOP
50 WRITE 819
816 FORMAT(" EMPTY INPUT FILE")
STOP
40 END

Figure 3-16. Program CORR Before Debugging

Since it is anticipated that the program will contain
errors, CID is used for the first attempt at execution.
The strategy is to allow the program to execute as far as
possible, and to then use information obtained during the
initial session to determine where to set traps and
breakpoints for subsequent sessions.

The initial attempt to execute CORR is shown in
figure 3-17. For the first session, no traps or breakpoints
are established; GO is issued to initiate program execution
and the program is simply allowed to execute until
termination, providing interactive control via an ABORT
trap. The trap message indicates that an execution error
has occurred. Error 04 is caused by a computation
involving ‘an indefinite operand. Line 27 of the source
program contains the statement SUMX =SUMY + Y(I).

Since the ABORT trap has given control to CID,
commands can be entered to try and determine the cause
of the error. The PRINT command displays: the contents
of the arrays X and Y, into which the input values are
stored; and the variable N, containing the number of cards
read. The value of the index I is displayed since execution
terminated within a DO loop. Note that only the first five

60482700 A

pairs of values are displayed (the X and Y arrays are
dimensioned 5). This indicates a possible error because
the test case contains 10 cards. Also, the values of the
card counter and the DO loop index are both equal te 11.
Suspicions of an indexing error are verified by the next
PRINT command, which uses an implied DO to print the
contents of X. The program contains no check on the
number of records read, which allowed the array bounds to
be exceeded. When the source program is corrected, such
a check will be included; but so that debugging can
continue without recompiling, the extra data cards are
simply removed from the input deck and the program is
rerun.

The second debug session is shown in figure 3-18.
Abnormal termination again occurs at line 27. Since
execution terminated within the loop, the values of I and
N are again printed along with some intermediate values.
Although the -data file contains only 5 records, the
counter N has a value of 6. This has caused another
indexing error. Referring to the source listing, it is seen
that N is initialized to 1 and is incremented after each
card is read; N will always contain a value one greater
than the actual number of records read. '

3-21

-

Input Data:

1.0 1.9
10.0 108.0
7.6 7.6

. Session Log:

CYBER INTERACTIVE DEBUG
?q0

?print*,x,y,n.i

?print*, (x(i) ,y(i),i=1,n)———

*T #18, ABORT CPU EKROR EXIT ¢4 IN L.27 ~s— ABORT trap at line 27.

1. 5.1 7.6 18. 2.4 3. 7. 106.5 106. 2.4 9 1

*WARN ~ SUBSCRIPT OUT OF RANGE
OK ?2auit

DEBUG TERMINATED

This form of the PRINT command indicates a subscript error.

Figure 3-17. Input Data for Fir;t Test Case and Debug Session

CYBER INTERACTIVE DEBUG
2go

*T #18, ABORT CPU ERROR EXIT #4 IN L.27--———— ABORT trap at line 27.
?print*,n, sumx, sumy, Sumxsqg, SUmysq, SUMXy , i ~e——— Display intermediate values.

61. 1. 1. -1 0. 1

N exceeds array boundary.

?2quit

DEBUG TERMINATED

SUMYSQ contains indefinite value.

Figure 3-18. Second Debug Session

The counter can be corrected by initializing it to 0
instead of 1. The CID output also shows that SUMYSQ
contains an indefinite value. This is caused by failure to
initialize SUMYSQ to 0. Without changing the source
code and recompiling, debugging can continue by
conducting another debug session and using assignment
commands to insert the correct values for N and SUMYSQ,

The third debug session is shown in figure 3-19. When the
breakpoint at line 20 occurs, N is set to 0 and SUMYSQ is
set to 0. The GO command resumes execution; this time
the program runs to completion. The value displayed for
R, however, is clearly incorrect since the correct value is
known to be 1.0. The next PRINT command shows that all
the data values are being read correctly, and it is known
from the second session that all the intermediate sums are
correctly initialized. Another session will be conducted
this time with execution suspended at various points
within the computation portion of the program so that the
progress of the calculations can be examined.

3-22

The fourth session is shown in figure 3-20. The correct
initial values for N and SUMXY are inserted as in the
previous session.

A JUMP trap is set at line 29, to suspend execution on
each pass through the loop, and a breakpoint is set at
line 33, to suspend execution immediately prior to
execution of the statement R=SQRT(RSQ).

Suspension at these statements allows all intermediate
values to be examined and any last minute chlanges made
before calculation of the final result. After the trap and
breakpoints are set, GO is entered. CID then issues an
ABORT message indicating that the allowable time limit
has been exceeded. The JUMP trap activated interpret
mode, which caused program execution to exceed the
system default time limit. The current session is
terminated and another session is initiated. This time a
breakpoint, instead of a JUMP trap, is set at line 29. The
breakpoint suspends execution before the instructions

60482700 A

CYBER INTERACTIVE DEBUG
?set ,breakpoint,l.22

?go

*B #1, AT L.22
?print*,n,sumysqg

6 ~I

Set breakpoint at line 22.

?n=n~1 ' }

?sumysqa=¢.8
290

*T #17, END IN L.36
?

STOP
guit

DEBUG TERMINATED

CORRELATION COEFFICIENT IS

2.42 Final result is incorrect.

.296 CpP SECONDS EXECUTION TIME

Calculate correct values for N and SUMYSQ.

Figure 3-19. Third Debug Session

CYBER INTERACTIVE DEBUG
?set ,breakpoint,1.22

?set,.trap,jump,1.29

INTERPRET MODE TURNED ON
?set ,breakpoint,1.33

290

*T #18, ABORT CP TIME LIMIT IN L.15 ~s—————— ABORT trap at line 15; time limit exceeded.

2quit

DEBUG TERMINATED
..rewind,1lgo

Rewind binary file.

..1g0 -

CYBER INTERACTIVE DEBUG
?set ,breakooint,1.22

Initiate new Debug session.

?set,breakpoint,1.29 ; =
?set ,breakpoint,1.33
?go

*B #1, AT L.22
?n=n~1

Set breakpoints at lines 22, 29, and 33.

?sumysg=6.9 }

Calculate correct values for N and SUMYSQ.

Figure 3-20. Fourth Debug Session (Sheet 1 of 2)

60482700 A

3-23

290

*B §2, AT L.29
orint*,i,5ymx, sSumy, Sumxsa, SUMVYSQ ., SURXY.

1 1. 1. 1. 1. 2.
290

*B #2, AT L.29
?print*,i,sumx,sumy, sumxsg, sumyso, sumxy

2 11. 11. 191. 161. 29.

?go Display intermediate values while execution is suspended

on each of ﬁrst four passes through loop.

*B #2, AT L.29
?print*,i,sumx,sumy,sumxsq,Sumysqg, sumxy

3 18.6 18.6 158.76 158.76 15.2
?2go

*B #2, AT L.29
?print*,j,sumx .sumy,Sumxsqg, SUmMySg, SUMXY

4 21.5 21.5 167.17 167.17 5.8
290

*B #2, AT L.29
?print*,i)

5
2sumxy=x(1)*y (1) +x(2) *y(2) \

2sumxy=sumxy+x (3) *y (3) +x (4) *y(4)

2 sumxy=sumxy+x (5) *y (5) > Afft;rU ;:;)& has completed, calculate the correct value
o .

?2print*,sumxy

193.18 /
?go

*B #3, AT L.33
?print*,num,denom
Value of NUM is incorrect.

Vadd
66739 66739.555600002
?sumx=(n*sumxy-sumx*sumy) * (n*sumxy-sumx *sumy)--——— Calculate correct value for numerator, using SUMX for
intermediate storage.
?print*,sumx .

66739.555680002
?rsq=sumx/denom —= Calculate correct value for RSQ.

?2print*,rsq

1.
2go

CORRELATION COEFFICIENT IS 1.00
*T $17, END IN L.36
?

L4

STOP
2.031 CP SECONDS EXECUTION TIME

guit

DEBUG TERMINATED

3-24

Figure 3-20. Fourth Debug Session (Sheet 2 of 2)

60482700 A

generated by line 29 are executed, but since this is a numerator. This requires a temporary location into which

CONTINUE statement, the breakpoint has the same effect the value of the numerator can be stored. The variable
as the JUMP trap. SUMX can be used for this temporary location since it is
not referenced after line 33. - After the numerator is
The session is then conducted as the preceding one, with calculated and stored in SUMX, an assignment command is
correct initial values inserted for N and SUMXY before used to calculate RSQ. The PRINT command shows that
execution is initiated. The first suspension occurs at RSQ now has the correct value. Execution is resumed at
line 29, after the first pass through the loop. A printout line 33, the location where it was suspended; line 33
of the intermediate sums at this point does not indicate calculates the final result. The program runs . to
that anything is amiss. Two more passes through the loop completion and the session is terminated by QUIT. The
still do not indicate an error, at least not at first glance. program now appears to execute correctly, at least for
On the fourth pass, however, the value of SUMXY does this particular test case.
not appear to be consistent. SUMXY contains a sum of
positive numbers, and yet its value on the fourth pass is At this point, it is probably a good idea to incorporate all
less than its value on the third pass. The statement - the accumulated changes into the source deck, recompile,
SUMXY = X(I) + Y(I) in the source program is incorrect; it and rerun the program to verify the corrections.
should read SUMXY = SUMXY + X(I) * Y(I). However, the program cannot be considered completely
debugged until it has been tested on additional sets of
The debug session can be continued by using the input data.
assignment command to calculate and insert the correct
value of SUMXY, First, execution is resumed to allow the For the next test case data records are included in which
loop to complete. After the last pass through the loop, all the X values are equal. The input file and session log
the correct value is calculated with an appropriate are shown in figure 3-21. The program runs to completion
assignment command. The next suspension occurs at but an error occurs in the SQRT routine and the indefinite
line 33, where a breakpoint was set. The value of R5Q is character ! is printed for the correlation coefficient.
printed and is clearly wrong; since the correct value of R Using CID commands to display intermediate values, it is
is known to be 1.0, the square of R should also be 1.0. The seen that a division by zero has occurred. CID has helped
next step is to examine the values used to calculate RS5Q: determine the location of the error, but in order to
NUM and DENOM., For RSQ to have a value of 1.0, NUM understand why the error occurred it is necessary to
and DENOM must be equal. However, the PRINT understand the mathematics of the program.
command shows that NUM and DENOM are not equal.
NUM is implicitly an integer and when the floating point In the formula for the correlation coefficient it can be
value was stored into NUM, truncation occurred. When shown that the calculation n Z x2-(Z x)2 has a value of
the source program is corrected, the name NUM will be zero if all the x values are equal. Whenever a division
replaced by a name that is type REAL. The session can be occurs within a program, you should always be alert to the
continued, however, by once again using an assignment possibility of a zero denominator and include statements
command to calculate the correct value for the testing for that possibility.
input Data:

3.0 1.0

3.0 5.1

3.8 7.6

3.6 19.0

Session Log:

'CYBER INTERACTIVE DEBUG
?go

ARGUMENT INFINITE
ERROR NUMBER 39 DETECTED BY SQRT)~ Error detected in SQRT routine.
CORRELATION COEFFICIENT IS I - '
*T #17, END IN L.37
?

STOP

.106 CP SECONDS EXECUTION TIME

print*,rsg,anum,denom

RSQ is out of range.
R™3.30872245021211E~24 0.
2quit

DEBUG TERMINATED

Figure 3-21. Input Data for Second Test Case and Debug Session

60482700 A) 3-25

To complete the debugging process two more test cases
are run: one in which the data correlates closely
(figure 3-22) and one in which the values are widely
scattered (figure 3-23). The results of both tests appear
to be correct. In a real situation correctness of the
results should be verified whenever possible by comparing
with known results or by performing hand calculations.
The final version of CORR, with all corrections included,
is shown in figure 3-24.

Input Data:

10.1 19.1
26.5 21.1
6.0 6.0
34.8 32.9
4.4 4.5

Session Log:

CYBER INTERACTIVE DERUG
200

CORRELATION COEFFICIENT IS 1.00

*T #17, END IN L.39
-

STOP .
.140 CP SECONDS EXECUTION TIME
auit

DEBUG TERMINATED

Figure 3-22. Input Data for Third Test Case
and Debug Session

Input Data:

12.0 ~6.4
2.9 15.2
4.3 1.1

2.8 10.9
5.5 =3.7

Session Log:

CYBER INTERACTIVF DERUG

2?00
CORRELATION COEFFICIENT IS .22
*T %17, END IN L.39
?
STOP
.116 CP SECONDS EXECUTION TIME
aguit

DEBUG TERMINATED

Figure 3-23. Input Data for Fourth Test Case
and Debug Session

3-26

SAMPLE PROGRAM NEWT

Program NEWT finds a zero root of a functon by Newton's
method. Newton's method generates successive
approximations to the equation f(x)=0 by applying the
iteration: -

Xj41=xj-Fx)/ dlxi)
where:
f(x;) is the current functional value.

d(xi) is the derivative of the current functional
value.

i is the current approximation to the root.
i+l is the new approximation to the root.

The program listing, shown in figure 3-25 contains line
numbers generated by the NOS line editor.

To use Newton's method, you start with an initial
approximation and apply the preceding scheme to
calculate a new, better approximation. You then
substitute the new approximation into the relation and
calculate a still closer approximation. Each successive
approximation is closer to the desired root. The process is
continued until the desired degree of accuracy is achieved.

The program to implement Newton's method consists of a
main routine, a subroutine to apply Newton's method, and
two function subprograms: F, which defines the function
to be solved, and D, which calculates the derivative of the
function.

The main program passes an initial approximation of the
solution to subroutine NEWT, along with the function
names. NEWT initializes an error flag IER, and a variable
ITS which contains the current number of iterations. The
iterative scheme is applied in lines 400 through 480. If
the initial approximation is itself a zero root, control
returns to the main program. A zero derivative generates
an error; therefore, a test is included for a zero value of
the function D. Line 440 calculates a new approximation
X. Line 410 tests the functional value FX of the current
approximation; if FX has a value of zero, control returns
to the main program. This type of test, as will be shown,
causes problems when used with an iterative scheme.

Subroutine NEWT returns the value of the solution X, the
number of iterations required ITS, and the error flag IER.

The function to be solved, defined in lines 550 through
590, is:

f(x)=3.0x-(x+1.0)/(x-1.0)
The derivative of the function, lines 610 through 670, is:
&(x)=3.0+2.0/(x-1.0)2

The debug session for this program is shown in
figure 3-26. Since the program involves several
subprograms, some traps that should be helpful in the
debugging process are set initially. The RJ trap in the
main program and in subroutine NEWT will suspend
execution at the subroutine and function calls and returns
in those program units. The FETCH and STORE traps,
established at location zero, will detect a subroutine call
with too few arguments.

60482700 A

1@

15

20

25

30

35

PROGRAM CORR 73/74 TS ID

PROGRAM CORR(OUTPUT,CORFIL,TAPE2=CORFIL)
TDIMENSION X(5),Y(5)

<. cINITIALIZATION

[eXeXe)

tN=0
sSuUMX=¢.0¢
SUMY=0.0
SUMXSQ=¢.0
SUMYSN=0.0

tsumMxy=6.0

[eXeKe!

.. .READ NUMBERS TO RE CORRELATED

REWIND 2
16 TREAD(2.,*) X(N+1).Y(N+1)
IF(EOF(2) .NE.A) GO TO 20
N=N+1
TIF(N.GT.5) GO TO 49
GO TO 1@
c
C...CALCULATE CORRELATION COEFFICIENT
C
20 IF(N.EN.8) GO TO 50
PO 38 I=1,N
SUMX=SUMX+X (T)
SUMY=SUMY+Y (I)
SUMXSO=SUMXSO+X (I) **2
SUMYSO=SUMYSO+Y (T) **2
T SUMXY=SUMXY+X(T) *Y(I)
39 CONTINUE
T ANUM= (N*SUMXY=SUMX* SUMY) *+2
DENOM= (N*SUMXSO~SUMX**2) * (N*SOMYSO=SUMY**2)
¥ IF(DENOM.EO.G.9) GO TO 6@
RSO=ANUM/DENOM
R=SORT (RS0)
WRITE 800,R .
83@ FORMAT(" CORRELATION CORFFICIENT IS “,F6.2)

STOP
4¢

C
45 STOP
STOP

50 815
END

Tindicates changes.

C
c.. JerrOR PROCESSING

40 WRITE 84S
845 FORMAT (" TOO MUCH INPUT DATA. LIMIT IS ’5 PAIRS*

59 WRITE 810
81@ FORMAT (" EMPTY INPUT FILE")

6@ WRITE 815))
FORMAT(“ BAD INPUT. ALL X'S OR ALL Y'S MUST N

Figure 3-24. Program CORR With Corrections

The first trap occurs on initial entry intoe the main
program. The next one occurs at the call to NEWT. This
is a good time to examine values input to the subroutine.
If the program does not contain a large number of
variables, LIST,VALUES is a good way to determine if
- variables have not been properly defined. The variable X0
has been initialized to zero; the variables IER and ITS
have not been initialized, since their values are calculated
in the subroutine. FF, which contains an indefinite value,
is- a misspelling of the function name F. Note that the
display commands do not list subprogram names (the
function name D does not appear in the list). The

60482700 A

subsequent PRINT command also shows the undefined
variables. At this point it might be evident that an
argument was omitted from the CALL statement. This
error is detected by STORE trap at line 370 which
indicates that a value was stored into a formal parameter
without a corresponding argument in the CALL
statement. Storing a value into IER caused the trap to
occur (IER is the sixth formal parameter in the subroutine
statement; there are only five arguments in the CALL
statement). The variable X0 is missing from the CALL
argument list. An assignment command is used to assign
the correct value to X0.

3-27

90146 PROGRAM MAIN (OUTPUT)
00119 EXTERNAL F,D

00120 X0=0.4

98139 CALL NEWT(FF,D.X,ITS,IER)
P¥140 IF(IER.NE.#) GO TO 900
#9150 WRITE 100, ITS,X

P¥160 108 FORMAT(" CONVERGENCE IN “,I4," ITERATIONS. X= ",E12.4)

80170 STOP

00189 998 STOP "ERROR IN SUBROUTINE NEWT*

80190 END

00204C

98216C SUBROUTINE NEWT FINDS A ZERO ROOT OF AN EQUATION BY
002260C NEWTONS METHOD }

9p238C

00240C INPUT

090250C F NAME OF FUNCTION DEFINING EQUATION TO BE SOLVED
08260C D NAME OF FUNCTION DEFINING DERIVATIVE
pB270C X0 INITIAL APPROXIMATION TO ROOT

002806C

80290C OUTPUT

#03080C X SOLUTION TO F(X)=0

29310C ITS NUMBER OF ITERATIONS REQUIRED FOR SOLUTION
803208C IER ERROR FLAG

00334C @ NO ERRORS

89340C 1 ERRORS

99358C

99360 SUBROUTINE NEWT(F,D,X@,X,ITS,IER)
80370 IER=9

PP380 ITS=0

20390 X=X@

09400 10 FX=F(X)

00419 IF(FX.EQ.0.9) RETURN
00420 DX=D(X)

00434 IF(DX.EQ.8.8) GO TO 940
PV449 X=X~FX/DX

60459 ITS=ITS+1

04460 GO TO 14

00470 900 WRITE 200, X0

#0486 200 FORMAT(" DERIV @& AT " ,F6.2," SPECIFY DIFFERENT X8")

99499 IER=1
99508 RETURN

90516 END

98520C

¥9530C F DEFINES A FUNCTION TO BE SOLVED BY NEWTONS METHOD
98540C

80558 FUNCTION F(X)

90568 IF(X.ED.1.0) STOP "BAD ARG TO F"

09576 F=3.0*X=(X+1.90)/(X~1.0)

89580 RETURN

20590 END

80608C

#961¢C D CALCULATES THE DERIVATIVE OF F

00626C

80630 FUNCTION D(X)

090648 IF(X.EQ.1.8) STOP "BAD ARG TO D"

00650 D=3.0+2.0/(X+1.0) **2

#0660 RETURN

P8670 END

Figure 3-25. Subroutine NEWT and Main Program Before Debugging

The next trap is an RJ trap, occurring when the function specified in the CALL statement, F cannot be referenced
D is referenced. The PRINT command indicates that the in NEWT. However, an assignment command can be used
input argument X0, has the correct value. An ABORT to calculate the correct functional value and store it in
trap occurs at line 400, where the functon F is FX. To continue execution, it is necessary to specify an
referenced. Since the function address was incorrectly address in the GO command to avoid executing the system
3-28 60482700 A

CYBER INTERACTIVE DEBUG .
? set,trap,rj,main-- Program name incorrectly specified.
*ERROR ~ NO PROGRAM VARIABLE MAIN
? set,trap,rj,p.main }

INTERPRET MODE TURNED ON
set,trap,rj,p.newt
§§§§§ gg: gtore ‘ g} - Set STORE and FETCH traps at location 0.
go

*T $1, RJ IN L.9®

? go
*T #1, RJ IN L.130 == - RJ trap occurs at CALL NEWT in MAIN.

? list,values,p.main

P.MAIN Function name F misspelied.

™
FF = 0.0, IER = 0, ITS = @, X=10.0, X0 = 9.0
? print*,d :

Set RJ trap in MAIN and NEWT.

W) W) W

*ERROR =~ NO PROGRAM VARIABLE D —=— D is a function name.
? go
*T $3, STORE INTO @ IN P. NEWT_L. 3 7@ —s——————————— Attempt to reference formal parameter corresponding to
? print*,x@ missing CALL argument causes STORE trap.
8.
? go
*T #2, RJ IN L.4060 RJ trap occurs at function reference in line 400.
? print*,x0
.
? go
*T $18, ABORT CPU ERROR EXIT 94 IN L.408 -=——— Incorrect function call causes ABORT trap.
? fx=3.9*%x~(x+1.0)/(x~1.0) i Calculate functional value FX.
? print*,x,fx
6. 1.
? go,1.410 —-= Resume execution at line 410.
*T $2, RJ IN L.420 RJ trap occurs at function reference in line 420.
? print*,x
9.
? clear,trap,rj—= Remove all RJ traps.
? go

*T $18, ABORT CPU ERROR EXIT 606 IN L.400
? fx=3.8*x~(x+1.0)/(x~1.8)
? print*,fx

6.66666666666664E~D2
? go,1.419

*T $18, ABORT CPU ERROR EXIT 80 IN L.400
? £x=3.0%x~(x+1.08)/(x~1.0)
? print*,fx

1.98323320339489E~02

? go,1.41@) ABORT trap occurs on each pass through loop. Calculate
*T #18, ABORT CPU ERROR EXIT 60 IN L.409 —~=— and display new value of FX. The correct solution is FX=0.

? fx=3.0%x~(x+1.8)/(x~1.0)
? go,l.410

*T #$18, ABORT CPU ERROR EXIT 68 IN L.400
? £x=3.0%x~(x+1.0)/(x~1.0)
? print*, fx

1.71038291327363E~083

? go,1.419

*T $18, ABORT CPU ERROR EXIT 60 IN L.400
? £x=3.0%x~(x+1.0)/(x~1.0)

? print*,fx,its - - ITS contains current number of iterations.
5.17567172241939E~084 5
? quit —-= Terminate session after it has been determined that

’ solution is converging.
SRU 17.659 UNTS.

RUN COMPLETE.

Figure 3-26. Debug Session for Subroutine NEWT

60482700 A

3-29

error code. In this case execution is resumed at line 410,
the next statement. Note that in the case of an
unresolved external reference, an RJ trap is not detected.

The RJ trap can now be removed with the CLEAR,TRAP
command to avoid unnecessary interruptions, and CID still
gains control through the ABORT trap, which occurs on
each reference to the function F. Thus, on each pass
though the loop, execution is suspended and a new
functional value can be calculated with the assignment
command.

If the iterative method is working properly, FX should

approach zero. A few passes through the loop reveal that
this is, in fact, happening. However, the test to exit from

3-30

the loop is satisfied only if FX is equal to zero, and it is
becoming evident that RX will approach but never equal
zero.

To prevent an infinite loop, the test for convergence must
be changed to exit on a sufficiently small value of FX.
The constant used for the test depends on the desired
degree of accuracy; for example, for 3-place accuracy, a
value of .0001 would be used. A limit should also be
imposed on the number of passes through the loop, since
the method might not converge for certain functions. The
loop can be replaced with a DO loop with an arbitrary
limit of 100 passes. The corrected version of the program
is shown in figure 3-27,

60482700 A

92180 PROGRAM MAIN(OUTPUT)
#0116 EXTERNAL F,D

90120 X0=0.9

#0138 TCALL NEWT(F,D,X®,X,ITS,IER)
20140 IF(IER.NE.@) GO TO 988
99158 WRITE 168, ITS,X

#0160 100 FORMAT(" CONVERGENCE IN “,I4," ITERATIONS. X= “",El12.4)

80178 STOP

89180 908 STOP "ERROR IN SUBROUTINE NEWT"

08199 END

00200C

00210C SUBROUTINE NEWT FINDS A ZERO ROOT OF AN EQUATION BY
08228C NEWTONS METHOD

#8230eC

60240C INPUT

08250C F NAME OF FUNCTION DEFINING EQUATION TO BE SOLVED

80268C D NAME OF FUNCTION DEFINING DERIVATIVE
80276C X8 INITIAL APPROXIMATION TO ROOT
80286C :
#8296C OUTPUT

898308C X SOLUTION TO F(X)=8

006316C ITS NUMBER OF ITERATIONS REQUIRED FOR SOLUTION
08326C IER ERROR FLAG

98330C @ NO ERRORS

#98348C 1 ERRORS

89356C

00368 SUBROUTINE NEWT(F,D,X@,X,ITS,IER)

89378 IER=0

80380 ITS=9

00385 TEPS=0.0001

003990 X=X0

98391C

$0392C ITERATE TO FIND ROOT
90393C

#0400TDO 190 1=1,100

#0485 FX=F(X)
90410 Y IF (ABS (FX) .LE.EPS) RETURN
99428 DX=D(X)

#9439 IF(DX.EQ.0.8) GO TO 9089
00440 X=X~FX/DX

$9458 ITS=ITS+1

90468718 CONTINUE

#9462 WRITE 888

90464 889 FORMAT(" METHOD HAS NOT CONVERGED IN 109 ITERATIONS")

09465 1ER=1
80466 RETURN
98467C
99470 900 WRITE 208, X0
08489 260 FORMAT(" DERIV P AT “,F6.2," SPBCIFY DIFFERENT X@")
80496 IER=1
88589 RETURN
'~ 8851€ END
88528C
08530C ° F DEFINES A FUNCTION TO BE SOLVED BY NEWTONS METHOD
08548C
80558 FUNCTION F(X)
89560 IF(X.EQ.1.8) STOP "BAD ARG TO F“
98578 F=3.0%*X~(X+1.0)/(X~1.8)
88588 RETURN
80599 END
80698C
80618C D CALCULATES THE DERIVATIVE OF F
88620C
#8630 FUNCTION D(X)
#8640 IF(X.EQ.1.08) STOP "BAD ARG TO D"
#0658 D=3.0+2.0/(X+1.0)**2
99660 RETURN
80678 END

Tindicates corrections.

60482700 A

Figure 3-27. Subroutine NEWT and Main Program With Corrections

3-31

DISPLAYING CID INFORMATION 4

This section describes some CID features and commands
that allow you to obtain various kinds of information
about the current debug session. These features include:

e Debug variables that contain useful information about
the current session and which can be displayed at the
terminal : .

e A HELP feature that provides information about CID
commands

e LIST commands that can display such things as load
map information, and trap and breakpoint information

e A TRACEBACK command that displays a subroutine

traceback list
e Error and warning messages

e A command to control the types of output displayed
at the terminal.

e A command to write CID output to an auxiliary file

The sample debug sessions appearing in this section, unless
otherwise indicated, were produced by executing
subroutine NEWT (figure 3-25) under CID control.

DEBUG VARIABLES

CID provides a set of variables that contain information
about the current status of a debug session and of the
executing program. You can display the contents of debug
variables whenever you have control. CID updates these
variables, and you cannot alter their contents directly.

Although the debug variables are primarily intended for
use by assembly language programmers, some of the
variables can provide information useful to FORTRAN
programmers, Those variables that are most useful to
FORTRAN programmers are listed in table 4-1. Refer to
the CID reference manual for a description of all debug
variables.

To display the contents of a debug variable, you must use
the DISPLAY command; debug variables cannot be
displayed with the PRINT command or LIST,VALUES
command. All variables except #EW and #PC are
automatically displayed in the appropriate format. Since
#EW and #PC contain numeric values, you should specify
the desired format on the DISPLAY command. Octal
format is the default for these variables.

Examples: ;

DISPLAY, #EW,D
Display the value of #EW in decimal format.

DISPLAY,#LINE

. Display the current source line number in the
form P.namelL.n.

60482900 A

TABLE 4-1. DEBUG VARIABLES

Variable Description

#LINE Number of FORTRAN line executing at time
of suspension.

#EW Effective word; on a STORE or FETCH
trap, #EW is the value fetched or stored.

#PC Previous contents; on STORE trap, #PC
contains the value previously stored at
the STORE location.

#EA Effective address; depending on trap
type, #EA indicates one of the following:

STORE address (variable name) of store
FETCH address (variable name) of fetch
RJ address of program unit being
- called or location to which
control is returned
JUMP destination address of jump

(S.n); undefined for condi-
tional jumps if conditiomn is

false
#HOME Home program name (P.name).
#BP Number of breakpoints currently defined.
#TP Number of traps currently defined.
#GP Number of groups currently defined.

The #EW, #PC, and #EA variables are valid only when
CID is in interpret mode. However, since the STORE,
FETCH, RJ, and JUMP traps automatically activate
interpret mode, it is not necessary to specify SET,
INTERPRET when using the variables with these traps.

A debug session using debug variables is illustrated in
figure 4-1. In this example traps and breakpoints are set
in the main program and in subroutine NEWT." When
execution is suspended, the DISPLAY command is used to
display the values of various debug variables. .

ERROR AND WARNING PROCESSING

Each time you enter a command, CID checks the
command for correctness. If errors are detected, CID
issues either an error or a warning message.

ERROR MESSAGES

CID issues an error message whenever it encounters a
command that cannot be executed. Error messages are
usually caused by a misspelled command or an illegal or
misspelled parameter. CID does not attempt to execute
an erroneous command. CID error messages, which are
followed by a user prompt, have the form:

*ERROR-text
?

The text contains a brief description of the error.

In response to an error message, you should consult the
CID reference manual or use the HELP command to
determine the correct command form, and reenter the
command.

Figure 4-2 shows some error messages that occurred when
a SET,TRAP,STORE command was issued while debugging
subroutine NEWT (figure 3-25). :

CYBER INTERACTIVE DEBUG
? set,trav.rij,o.main

Set RJ trap in MAIN

INTFRPRET MODE TURNED ON

Set breakpoint at line 390 of NEWT

? set,breaknoint,p.newt_1.390 ==

? go
*T $#1, RJ IN L.#

? ao

*P #1, RJ IN L.130) =

RJ trap at call to NEWT

? display,#ea -
#FA = E,.NEWT
? ao

Display destination of call

Breakpoint at line 390 of NEWT

*B #1, AT P.NEWT_L.390 =

? set.trap,store.,x =

Set STORE trap for variable X
Display number of traps currently defined

? display.#tp--—
TP = 2

Display number of breakpoints currently defined

? display.#bp -
4BP = 1]

Display current FORTRAN line

? displav,#line ==
$LINE = P,NEWT_L.390

Display home program name

? displav,#home--

#HOME = P.NEWT

? qo

*T %¥2, STORE INTO X (OF P.MAIN) IN L.390

STORE trap on store into X at line 390
Display address of store

? disvlay, #ed ——-—
#EA = P.MAIN X

? display,tew,d—=——

Display value stored

4EW = 0.0

? display,#oc,qd -
#PC = 0.0

? ao

*T #2, STORE INTO X (OF P.MAIN) IN L.44¢

Display previous contents of store location

STORE trap on store into X at line 440

? display,few, d-=
$#EW = =.19999999999999928945726424
? disvlay,$#pc,d -

Display value stored

Display previous contents of store location

$PC = 0.0
? auit
SRU 19.987 ONTS.

RUN COMPLETE.

Figure 4-1. Debug Session Illustrating Debug Variables

? set,trap.,store,o.newt ex

*ERROR -~ NO PROGRAM VARIABLE EX —e—————— Variable name incorrectly specified in preceding command.

? set,trap,store,p.newt_fx
INTERPRET MODE TURNED ON
? set,breakpoint,s.10

. *ERROR =~ NO EXECUTABLE STATMENT 10 -t Qualifier omitted from statement label.

? set,breakvoint,p.newt_s.10
?

4-2

Figure 4-2, Partial Debug Session Illustrating Error Messages

60482900 A

WARNING MESSAGES

CID issues a warning message if a command you have
entered will have consequences you might not be aware of
or if the command will result in CID action other than
that which you have specified. The warning message is
followed by a special input prompt; in response to this
prompt you can tell CID either to execute the command
or to ignore it. The format of a warning message is:

*WARN-message

OK?
The message describes the action CID will take if allowed
to execute the command. In response to a warning
message you can enter the following:

CID executes the command.

YES or OK
NO CID disregards the command.
Any CID Command CID disregards the previous

command and executes the
- new one.

Figure 4-3 illustrates some warning messages that were
issued while debugging subroutine NEWT. In this example
the programmer mistyped a breakpoint location and did
not intend to redefine an existing breakpoint. CID
notified the programmer of the effect and permitted the
correct command to be entered.

Warning messages can be suppressed by an option on the
SET,0UTPUT command, described later in this section. In
this case, CID automatically takes the action indicated in
the message without providing notification.

Refer to the CID reference manual for a complete list of
warning messages and an explanation of each.

LIST COMMANDS

The LIST commands allow you to list various types of
information relevant to the current debug session or to
your program. The LIST commands are summarized in
table 4-2.

The LIST commands are particularly useful with longer
debug sessions in which you are constantly changing the
status of the session. For example, you might initially set
some -traps or breakpoints, clear some or all of them later
in the session, and set new ones; or you might change
output options several times during the course of a
session. With the LIST commands you can keep track of
this and other CID information.

TABLE 4-2. LIST COMMANDS

Command Description

LIST,BREAKPOINT | Lists breakpoint information.

LIST,TRAP Lists trap information.
LIST,GROUP Lists commands group information.
LIST,MAP Lists load map information.
LIST,STATUS Lists information about current

status of debug session.

LIST,VALUES Lists names and contents of

user—defined variables.

Some of the LIST commands can produce a large volume
of output. It is possible to prevent this output from
appearing at the terminal and to write it instead to a
separate file that can then be printed. The commands to
accomplish this are discussed later in this section under
Control of CID Output.

LIST, BREAKPOINT COMMAND

Breakpoint information can be displayed by issuing the
LIST,BREAKPOINT command. The information included
in the list depends on the form of the command used. You
can list all breakpoints currently defined for your program
or for a particular program unit or overlay. You can also
specify individual breakpoints by address (line number or
statement number) or by breakpoint number, in which case
the breakpoint bodies, if any exist, are listed.

The following commands display a list of breakpoint
locations:

LIST,BREAKPOINT
Display a list of all breakpoints currently defined
in the debug session.

LIST,BREAKPOINT,P.name
Display a list of all breakpoints established in the
specified program unit.

These forms of the LIST,BREAKPOINT command list the
program unit in which the breakpoints reside and the line
number (L.n) or statement label (S.n) of each breakpoint,
depending on how you specified the breakpoint location in
the SET,BREAKPOINT command. These commands do not
list breakpoint bodies if any have been defined. .

CYBER INTERACTIVE DEBUG
? set.,breakpoint,po.newt 1.3760

? set,breakpoint,p.newt_1.370,18,200,2 -

*WARN ~ EXISTING BREAKPOINT WILL BE REDEFINED
OK ? set,breakvoint,p.newt_s.16,1¢,2@0, 2 ~€——————— Enter correct command.

? clear,trap--=

Attempt to establish breakpoint where one
already exists.

Attempt to clear all traps.

*WARN -~ ALL WILL BE CLEARED

OK ? ok ==
INTERPRET MODE TURNED OFF
-

Execute preceding command.

Figure 4-3. Partial Debug Session Illustrating Warning Messages

60482900 A

4-3

Breakpoint bodies (section 5) can be displayed by
specifying individual breakpoints in the following formats:

LIST,BREAKPOINT,locy,locy,...
Displays the bodies of the breakpoints at

gddresses loey, locy, ...; locy has the form L.n or
.n.

LIST,BREAKPOINT,#ny,#ny,...
Displays the bodies of the breakpoints having
sequence numbers #m, #no,..; breakpoint
numbers are assigned by CID when the
breakpoints are established.

Figure 4-4 illustrates the listing of breakpoints during a
debug session for subroutine NEWT.

? list,breakpoint

*B #1 = L.134, *B #2 = P.NEWT S.10
? clear,breakpoint -
*WARN -~ ALL WILL BE CLEARED

OK ? ok
? list,breakpoint

NO BREAKPOINTS
?

Figure 4-4. Partial Debug Session Illustrating
LIST,BREAKPOINT Command

Examples of other forms of the LIST,BREAKPOINT
command are included in section 5.

LIST,TRAP COMMAND

Information about traps defined for the current debug
session can be displayed with the LIST,TRAP command.
The information displayed depends on the form of the
command used. The LIST,TRAP command has the
following forms:

LIST,TRAP
Display the type, address, and sequence number
of all traps defined for the current session.

LIST,TRAP,type,P.name
Display the address and sequence number of
traps of the specified type defined for the
specified program unit; type and P.name are
optional.

LIST,TRAP,type
Display the address and sequence number of
traps of the specified type; type is one of the
types listed in table 3-1.

LIST,TRAP,,P.name
Display the address and sequence number of all
traps defined for the specified program unit.

Following is an example of LIST,TRAP output:

T#1=RJ P.TEST, T#2=RJ P.SUBX,
T#3=STORE X, T#4=FETCH X

Trap #1 is an RJ trap established in program unit TEST;
trap #2 is an RJ trap established in program unit SUBX;
trap #3 is a STORE trap for the variable X; and trap #4 is
a FETCH trap for X.

The preceding LIST,TRAP commands do not list trap
bodies if any have been defined. To.list the commands
comprising trap bodies, use the form:

LIST,TRAP,#ny,#np,...

where #n),#n2,... are trap sequence numbers assigned by
CID when the trap is established. Trap bodies are
discussed in section 5.

For all LIST,TRAP commands, CID lists the trap location
in the same manner it was specified in the SET,TRAP
command. This location can be an entire program unit
(P.name), a line number (L.n), a statement number (S.n), a
qualified line or statement number (P.namel.n or
P.nameS.n), or a variable name.

Figure 4-5 illustrates LIST,TRAP commands used in a
debug session for subroutine NEWT. After the first
LIST,TRAP is issued, all traps are removed with the
CLEAR,TRAP command and another LIST,TRAP is issued.

LIST,GROUP COMMAND

Information about command groups defined for the
current session can be displayed with the LIST,GROUP
command. This command has the following forms:

LIST,GROUP
List the names and numbers of all groups defined
for the current session.

LIST,GROUP,namej,namey,...
List the commands contained in the groups
having the specified names.

LIST,GROUP,#ny,#ny,...
List the commands contained in the groups
identified by the specified numbers.

Note that the first command form lists only the names
and numbers of groups, whereas the second and third
forms list the commands comprising the specified groups.

Groups are discussed in section 5.

? list,trap

T $1 = STORE P.NEWT_FX,

? clear,trap,#1,%2

INTERPRET MODE TURNED OFF

? list,trap
NO TRAPS
?

T #2 = STORE P.NEWT_DX

Figure 4-5. Partial Debug Session Ilustrating LIST,TRAP Command

4-4

60482900 A

I.IST ,MAP COMMAND

The LIST,MAP command displays load map information.
This command is useful when the FORTRAN program
contains many subroutine calls or common blocks, since it
provides a concise list of subroutine and common block
names. The LIST,MAP command can also provide length
information which is useful in detecting incorrectly
specified common block lengths. This command has the
following forms:

LIST,MAP
List all modules comprising the program,
including user-defined modules, common blocks,
and FORTRAN and library modules.

LIST,MAP,P.namej,P.namey,...
List the first word address (FWA), iength (octal
words), and all entry point names for the
specified program units.

LIST,MAP,C.name],C.namey,...
List the first word address and length (octal
words) of the specified common blocks.

Common blocks are enclosed in slashes in LIST,MAP
output.

Figure 4-6 illustrates a debug session involving a program
in which two common blocks are declared. An incorrect
dimension is specified for common block ACOM in
subroutine BAKER. The LIST,MAP command displays the
correct length as declared in the main program.

LIST,STATUS COMMAND
The LIST,STATUS command displays a brief summary of
the status of a debug session as it exists at the time the

command is issued. This command has the form:

LIST,STATUS

Sample Program:

PROGRAM ABLE 74/74

PROGRAM ABLE

COMMON/ACOM/A (10) ,AA (10)
COMMON/BCOM/B (58) ,BB (180)

CALL BAKER
STOP
END

SUBROUTINE BAKER 74/74

1 SUBROUTINE BAKER
‘COMMON/ACOM/X (25)
COMMON/BCOM/Y (1)
DO 6 1I=1,25 '
X(1)=0.0

DO 8 I=1115ﬁ
Y(I1)=0.06

RETURN

END

Session Log:

CYBER INTERACTIVE DEBUG

list,map user programs
ABLE, /ACOM/, /BCOM/,
/08.10./, FCL=FDL,
SYSAID=, FORUTL=,
/FDL.COM/, FDL.MMI, CPU.SYS,
CMF.FRF, CMM.R, CMF.SLF, CTLSRM,

DBUG.,
/FCL.C./,
GETFIT=,

BAKER,
/FCL=ENT/,
FTNRP2=,

CMF.ALF,
ERRS$RH,

Q2NTRY=, /STP .END/
FEIFST=, FORSYS=

UCLOAD, FDL.RES
CMF.CSF, CMM.FFA

LISTSRM

?list,map,C.acom =

LENGTH

BLOCK ~ ACOM, FWA
?list,map,c.bcom =

31218,

24B

Display starting address and length of ACOM.

Display starting address and length of BCOM.

BLOCK -~ BCOM,
?quit

FWA 31458, LENGTH

DEBUG TERMINATED

226B

Figure 4-6.

60482900 A

Program ABLE and Debug Session Illustrating LIST,MAP Command

Information displayed by the LIST,STATUS command
includes:

Home program name.

Number of breakpoints currently defined.
Number of traps currently defined.
Number of groups currently defined.
Veto mode on or off.

Interpret mode on or off.

Output options. Output options are controlled by the
SET,OUTPUT command, described under Control of
CID Output, which specifies the types of CID output
sent to the terminal.

Auxiliary file options. These options are specified by
the SET,AUXILIARY command (section 5), which
defines an auxiliary output file and specifies the type
of output to be sent to that file.

Figure 4-7 illustrates LIST,STATUS commands issued
when debugging subroutine NEWT. The command is issued
at the beginning of the session and again when execution
is suspended at a breakpoint in NEWT. The output
indicates the changes in the status of the debug session.

HELP COMMAND

CID provides a HELP command that displays a brief
summary of information about specific CID subjects and
commands. You can issue the HELP command whenever
you need assistance with a particular aspect of CID.

Simply entering the command:

HELP

causes CID to display a list of subjects. To obtain
additional information about any subject in the list, enter:

HELP,subject

For example, the command HELP,ERROR displays a brief
description of error processing.

A particularly useful command is HELP,CMDS which
displays a complete list of CID commands and a brief

explanation of each. You can obtain a more detailed
explanation of any CID command by entering:

HELP,command

The HELP command does not provide the same level of
detail as the CID reference manual, however, and should
not be considered a substitute for the reference manual.

The HELP command is illustrated in figure 4-8, which
shows the entry of the command HELP,SET,BREAKPOINT
to display a summary of the command parameters.

TRACEBACK COMMAND

The TRACEBACK command displays a list of subroutine
levels from the level of the most recent execution of the
specified subprogram through the main level. At each
level, TRACEBACK displays the name of the program unit
that last called the specified subroutine and the line
number within the program unit where the call occurred.
The format of this output is P.namel.n. The
TRACEBACK command has the following forms:

TRACEBACK
Display a traceback beginning at the current
home program.

TRACEBACK,P.name
Display a traceback beginning with the specified
program unit name.

TRACEBACK,E.ept
Display a traceback beginning with the specified

entry point name.

The TRACEBACK command is illustrated by the debug
session shown in figure 4-9. In this example, breakpoints
are established in function subprograms D and F. When
execution is suspended in these functions, various forms of
the TRACEBACK command are issued.

CONTROL OF CID OUTPUT

The output produced by the LIST, TRACEBACK,
DISPLAY, and PRINT commands can become voluminous.
As an alternative to displaying all CID output at the
terminal, CID provides the following commands for
controlling the disposition of output:

?list,status

HOME = P.MAIN, NO BREAKPOINTS,

INTERPRET OFF, OUT OPTIONS = I W E D, AUXILIARY CLEAR

?

?list,status

HOME = P.NEWT, 2 BREAKPOINTS,

INTERPRET ON, OUT OPTIONS = I W E D, AUXILIARY CLEAR

?

NO TRAPS, NO GROUPS, VETO OFF

1 TRAPS, NO GROUPS, VETO OFF

Figure 4-7. Partial Debug Session Illustrating LIST,STATUS Command

4-6

60482900 A

CYBER INTERACTIVE DEBUG
? help,set,breakpoint

BREAKPOINT COMMAND IS.

WHERE

EXECUTED.

SB =~ SET BREAKPOINT - ALLOWS YOU TO SET A BREAKPOINT AT A
SPECIFIC LOCATIONS IN USER’S PROGRAM.

SB LOCATION, FIRST, LAST, STEP

"LOCATION"~ IS THE LOCATION IN YOUR PROGRAM AT WHICH
YOU WANT THE BREAKPOINT SET.

"FIRST , 'LAST AND 'STEP ARE OPTIONAL AND ARE DEFAULTED TO
'THE BREAKPOINT IS NOT HONORED
UNTIL IT HAS BEEN HIT "FIRST TIMES, WHEN IT WILL BE HONORED
EACH “STEP TH TIME UNTIL "LAST’
IF YOU TERMINATE THE SB COMMAND WITH AN OPEN BRACKET [, THEN
ALL COMMANDS UP TO A CLOSE BRACKET] WILL BE COLLECTED SUCH
THAT WHEN THE BREAKPOINT IS HONORED, THOSE COMMANDS WILL BE

1, 131671 AND 1 RESPECTIVELY.

THE FORM OF THE SET

IS REACHED OR EXCEEDED.

Figure 4-8. Partial Debug Session Illustrating HELP Command

set,breakpoint,p.f 1.588
set ,breakpoint /p.d_1.668
go

*B 41, AT P.F _L.580 =

o)

? traceback =
P.F CALLED FROM P.NEWT_L.9
P.NEWT CALLED FROM P.MAIN_L.130

? traceback,p.d

*ERROR ~ PROGRAM D NOT CALLED
?

? go
*B $2, AT P.D_L.660 =

? traceback =
P.D CALLED FROM P.NEWT__L.G

P.NEWT CALLED FROM P.MAIN L.136

? traceback,p.f -
P.F CALLED FROM P.NEWT L.§

P.NEWT CALLED FROM P.MAIN L.130
?

Execution suspended in function F.
Initiate traceback form home program.

Attempt to initiate traceback from a subprogram that has
not been executed.

Execution suspended in function D.

Initiate traceback from home program.

Initiate traceback from function F.

Figure 4-9. Debug Session Illustrating TRACEBACK Command

SET,OUTPUT
Specify the types of output to be displayed at the
terminal.

SET,AUXILIARY
Define an auxiliary output file and specifies the
types of output to be sent to the file.

TYPES OF OUTPUT
For purposes of the SET,OUTPUT and SET,AUXILIARY
commands, CID output is classified as to type with each

type represented by a l-letter code. The output codes,
along with a description of each, are listed in table 4-3.

SET,OUTPUT COMMAND
The SET,OUTPUT command specifies the types of output
to be displayed at the terminal. The SET,OUTPUT
command has the form:

SET,OUTPUT,t],t,...
where tp is an optional output code. Valid codes are listed

in table 4-3.

60482700 A

Including an output code in the option list of the
SET,0UTPUT command causes the associated output type
to be displayed at the terminal. Omitting an output code
from the option list suppresses the associated output
type. Thus, when a SET,OUTPUT command is specified,
any output type not included in the option list is not
displayed at the terminal. For example, the command:

SET,0UTPUT,E,W,I

causes output types E, W, and I to be displayed at the
terminal while suppressing types D, R, and B.

The default output types are E, W, D, and L. It is
unnecessary to specify type T in a SET,OUTPUT command
since all user input is displayed at the terminal when it is
entered.

The only output types not automatically displayed are
group and file command sequences (type R) and trap and
breakpoint bodies (type B). To display this output, in
addition to the default types, enter the command:

SET,0UTPUT,E,W,I,D,R,B

TABLE 4-3. CID OUTPUT TYPES

Output Code Description

E Error messages.

w Warning messages.

D Output produced by execution of CID
commands. Includes output resulting
from LIST, DISPLAY, PRINT, TRACEBACK
commands.

I Informative messages. Includes trap
and breakpoint messages and mode
messages.

R Group and file command sequences;
output when a READ command is
executed.

B Trap and breakpoint body command se-
quences; output when a trap or break-
point with a body is encountered.

T Echo of user—-input information.

If you specify the R option on the SET,OUTPUT
command, then whenever a READ command is executed,
the command sequence is displayed at the terminal. If
you specify the B option, then whenever a trap or
breakpoint for which you have defined a body is detected,
the commands comprising the body are displayed.
Command sequences are discussed in section 5.

The only output types that cannot be suppressed are the
informative messages issued when traps or breakpoints are
detected (these are included in type). These messages
are always displayed regardless of SET,OUTPUT
specifications. Error messages (type E) can be suppressed
only if you have provided for writing them to an auxiliary
file with the SET,AUXILIARY command. If you attempt
to suppress error messages and you have not provided for
writing them to an auxiliary file, CID issues an error
message.

If you suppress warning messages by omitting W from the
SET,OUTPUT command, CID executes all commands that
would normally generate a warning message. No user
prompt is issued; CID takes the corrective action
described in the warning message, as if you had entered a
YES or OK response (see Error and Warning Processing).

To suppress all output to the terminal (except trap and
breakpoint messages) you can issue either a SET,OUTPUT
command with no option list or the command:

CLEAR,OUTPUT

Prior to entering either of these commands, however, you
must provide for writing error messages to an
auxiliary file.

After a CLEAR,OUTPUT command has been issued, you
can restore output to default conditions with the
command:

SET,0UTPUT,E,W,D,I

4-8

The SET,OUTPUT command can be used in conjunction
with the SET,AUXILIARY command to suppress certain
types of output to the terminal and to send that output
type to an auxiliary file. The most common output to
suppress is type D, output produced by execution of CID
commands. This includes output produced by the LIST and
display commands, all of which can produce large amounts
of output.

SET,AUXILIARY COMMAND

The SET,AUXILIARY command defines an auxiliary
output file and specifies which types of CID output are to
be written to that file. The SET,AUXILIARY command
has the following form:

SET,AUXILIARY,lfn,ty,t2,...

where Ifn is the name of the auxiliary file and tp is an
output code. Valid codes are listed in table 4-3.

The SET,AUXILIARY command has no effect on output
that is being displayed at the terminal. For example, the
command:

SET,AUXILIARY,FAUX,LD

creates a file named FAUX and writes all informative and
command output messages to the file. These messages
are also displayed at the terminal unless the appropriate
SET,0UTPUT command has been used to change this.

The option specifications for an auxiliary file can be
changed simply by entering another SET,AUXILIARY
command with the file name and a new option list; it is
not necessary to close the file beforehand.

Only one auxiliary file can be in use at a time. The QUIT
command closes the auxiliary file currently in use. To
close an auxiliary file before the end of a debug session,
issue the command:

CLEAR,AUXILIARY

An auxiliary file can be closed at any time during a debug
session.

After you close an auxiliary file you can dispose of it in
any manner you wish, displaying it at the terminal,
sending it to a printer, or storing it on a permanent
storage device. CLEAR,AUXILIARY does not rewind the
file; after issuing a CLEAR,AUXILIARY you can issue a
SET,AUXILIARY for the same file in the same or in a
subsequent session and the additional information is
written after the end-of-record.

A common use of the SET,AUXILIARY command. is to
preserve a copy of a debug session log. The command:

SET,AUXILIARY,OUTF,E,W,D,I, T

issued at the beginning of a debug session writes to file
OUTF the output types E, W, D, I, and T, thus creating a
copy of the session exactly as displayed at the terminal.
Note that user commands automatically appear when
outputting to the terminal. However, when outputting to
an auxiliary file, you must specify the T option to include
user-entered commands in the file.

60482700 A

The following example illustrates a SET,OUTPUT
command used in conjunction with a SET,AUXILIARY
command to suppress output to the terminal and write it
to an auxiliary file:

?SET,0UTPUT,E,W,1
?SET,AUXILIARY,LFG,D
2LIST,MAP
?CLEAR,AUXILIARY
2SET,0UTPUT,E,W,1,D

This example suppresses all output produced by CID
commands (type D), creates an auxiliary file called LGF
to which this output is to be written, writes load map
information to LGF, closes LGF, and resets output options
to original conditions. :

The following example illustrates a CLEAR,OUTPUT
command used with a SET,AUXILIARY command:

2SET,AUXILIARY, AUXF,D,E
?CLEAR,OUTPUT
2LIST,VALUES
2CLEAR,AUXILIARY
2SET,0UTPUT,E,W,D,I

This example defines an auxiliary file named AUXF to
receive error messages and output from CID commands,
turns off output to the terminal (except for trap and
breakpoint messages), writes program variables and
contents to AUXF, closes AUXF, and restores terminal
output to normal default conditions.

An example of a debug session using an auxiliary file is
illustrated in figure 4-10. This session was produced by
executing subroutine AREA (figure 3-10) under CID
control. In this example, an auxiliary file AFILE is
defined; the D option causes output from CID commands
to be sent to AFILE. A breakpoint is established at
line 6. After the breakpoint suspends execution,
commands are issued to suppress command output
(type D) to the terminal, to list all variables and values
local to subroutine AREA, and then to reestablish default
output conditions. The session is terminated after one
pass through AREA. File AFILE (figure 4-11) contains the
output from the LIST,VALUES command. (A better way
of doing this would be to include the SET,OUTPUT and
LIST,VALUES commands in a breakpoint body. This would
preclude the necessity of reentering these commands on
each pass through the subroutine. Breakpoint bodies are
discussed in section 5.)

CYBER INTERACTIVE DEBUG

?set,breakpoint,p.area_1.7
2?90

*B §1, AT P.AREA_L.7
?2clear ,output ~==

?list,values,p.area)
?30°

*B §1, AT P.AREA L.7

290

*B #1, AT P.AREA_}.?
?list,values,p.area)

?set,output,e,w,d,i-—=
?go

*T 417, END IN P.RDTR_L.7
?

STOP

1.466 CP SECONDS EXECUTION TIME
quit

DEBUG TERMINATED

?set,auxiliary,afile,d, e <s«————— Establish auxiliary file AFILE. Command output and error messages
are to be sent to this file.

Clear all output to terminal.

?list,values,p.afea ><._—_ List program values while execution is suspended on each pass
through subroutine AREA.)

Restore normal output to terminal.

Figure 4-10. Debug Session Illustrating SET,AUXILIARY, SET,OUTPUT and CLEAR, OUTPUT Commands

60482700 A

1 CYBER INTERACTIVE DEBUG

*B $1, AT P.AREA L.7

P.AREA

A = .54999999999999, S1 = 1.1188339887499, S2
§3 =1.7, T = 1.9189189457342, X1 = 0.8, X2
Yl = 1.8, Y2 =2.8, Y¥3=1.2

*B §#1, AT P.AREA L.7

P.AREA

A = 23.699999999999, S1 = 8.4852813742385, S2
S3 = 11.428473213864, T = 12.846946497375, X1
X3 = 3.2, Yl =2.8, Y2=-4.8, Y3 =7.8

*B #1, AT P.AREA_L.7
P.AREA

A = 33.704999999999, Sl
S3 = 8.6400231481171, T
X3 = 5.6, Yl = -2.9, Y2
*T #17, END IN P.RDTR_L.7

1.81980839027186 _
.5, X3 = ~1.8f % Firstpass

5.7801384066474
6.1, X2 = .1 }"‘_—S"w"d"a“

11.8062726934719, S2 = 7.8517513969814
13.7472587399909, X1l = .2, X2 = ~1.3
= 8.0, Y3 = 2.8 ’

}<—'— Third pass

Figure 4-11. Listing of Auxiliary File AFILE

4-10 h 60482700 A

AUTOMATIC EXECUTION OF CID COMMANDS 5

It is frequently necessary to enter the same command or
sequence of commands many times during the course of a
debug session. This situation is illustrated in the examples
in figures 3-16 through 3-27. In the debug session
involving subroutine NEWT, the same sequence of
commands is needed on each pass through the loop.
Debugging program CORR required several sessions;
during each session it was necessary to reenter the
assignment commands that calculated the correct
intermediate values.

To eliminate the need for repeatedly entering sequences
of commands, CID provides the ability to define, save, and
automatically execute sequences of commands.
Sequences can be used to improve debugging efficiency
whenever the same group of CID commands must be
entered repeatedly. Sequences are commonly used when
debugging DO loops and frequently called subroutines, and
in multiple debug sessions that require the same
commands. In addition, CID provides some special
sequence commands that allow you to incorporate
FORTRAN-like logic into command sequences. For
example, sequence commands allow branching and
conditional execution of CID commands.

COMMAND SEQUENCES

A command sequence is a series of CID commands which
is to be executed automatically either when certain
conditions occur or when the appropriate command is
entered from the terminal.

There are three ways in which you can establish a
command sequence:

e By defining a command sequence as part of a trap or
breakpoint. This causes the sequence to be executed
whenever the trap or breakpoint occurs. A sequence
defined in this manner is called a trap body or
breakpoint body.

e By defining a command sequence called a group. A

group can be executed by issuing a READ command
from - the terminal or from = another command
sequence.

e By creating a file, outside of CID, which contains a
sequence of CID commands. The commands in this
file can be executed by issuing a READ command at
the terminal or from another command sequence.

During normal execution, CID prompts for user input after
a command is executed. During sequence execution,
however, CID executes all the commands in the sequence
without interruption. Once execution of the sequence is
completed, execution of your program resumes at the
point where it was suspended. The PAUSE command,
described later in this section, allows you to interrupt the
execution of a command sequence.

Command sequences can be nested; that is, command
sequences can be called from other command sequences.

60482700 A

COLLECT MODE

Collect mode is a mode of execution in which CID
commands are not executed immediately, but are included
in a command sequence for execution at a later time. To
define a trap body, breakpoint body, or command group,
you must first activate collect mode. The procedure for
entering and leaving collect mode is described under Traps
and Breakpoints With Bodies.

Commands in a sequence that you are creating cannot be

altered while CID is in collect mode. If you make a
mistake or wish to change a command that you have
entered, you must leave collect mode and proceed as
described under Editing a Command Sequence.

SEQUENCE COMMANDS

The commands intended specifically for use with
command sequences are summarized in table 5-1.

TABLE 5-1. SEQUENCE COMMANDS

Command Description

PAUSE Temporarily suspends execution of
the current command sequence and
reinstates interactive mode
allowing commands to be entered
from the terminal.

MESSAGE Displays a message at the terminal.

GO Resumes the process most recently
suspended.

Resumes execution of the user
program.

EXECUTE

IF Performs conditional execution of
) commands.

LABEL Defines a label within a command
sequence.

JUMP Transfers control within a
command sequence to a label
_defined by a LABEL command.

READ Initiates execution of a command
sequence defined as a group or
stored on a file; reestablishes
trap, break-point, and group
definitions stored on a file.

TRAPS AND BREAKPOINTS WITH BODIES

A body is a sequence of commands specified as part of a
SET,TRAP or SET,BREAKPOINT command. To define a
trap or breakpoint with a body, you must first initiate
collect mode by including a left bracket ([) as the last
parameter of the SET,TRAP or SET,BREAKPOINT
command. For example:

SET,TRAP,LINE,P.MAIN [

The bracket and the preceding parameter must not be
separated by a comma; the blank separator is optional.

When the above command is entered, CID displays the
message and prompt:

IN COLLECT MODE
?

You then enter the commands that are to comprise the
body. Each command entered while CID is in collect
mode becomes part of the body. CID scans the command
for errors but does not execute the command. You can
include any number of commands in a body, although
command sequences should be kept short and simple.

To leave collect mode and return to interactive mode,
enter a right bracket () in response to the ? prompt or at
the end of a command line. CID then displays:

END COLLECT MODE
?

and you can continue the session.

An example of a breakpoint definition with a body is as
follows: i

SET,BREAKPOINT,L.8, [
A=B-C

X=0.0

Y=Y+L.0

I]DRINT*,A,X,Y

When a trap or breakpoint with a body is encountered,
program execution is suspended and the commands in the
body are executed automatically. Program execution then
resumes at the trap or breakpoint location.

When a trap or breakpoint with a body is encountered
during execution, the normal trap or breakpoint message
is not displayed. However, you can provide your own
notification of the execution of a trap or breakpoint body
by including a MESSAGE command (table 5-1) in the
sequence. The format of the MESSAGE command is:

MESSAGE,"character string”

When a MESSAGE command is encountered, the character
string is displayed.

You do not receive control during execution of a sequence
unless you have provided for it by including a PAUSE
command (described under Receiving Control During
Sequence Execution) in the body. When the body has been
executed, execution of your program automatically
resumes at the location where it was suspended.

5-2

You can list the commands contained in a trap body by
issuing a LIST,TRAP command and specifying a list of
trap numbers, as in the example:

LIST, TRAP,#2,#3

Other forms of the LIST,TRAP command list the type and
location of the trap, but not the body.

To list the commands contained in a breakpoint body,
specify the breakpoints either by number or location, as in
the examples:

LIST,BREAKPOINT,#1,#5,#6
LIST,BREAKPOINT,P.SUBCL.10

An example ‘of the procedure for establishing a breakpoint
body is illustrated in figure 5-1. The program used in this
example is shown in figure 3-1. A breakpoint is
established at the RETURN statement in subroutine
AREA. The breakpoint body contains the following
commands:

A MESSAGE command to display a message when the
trap occurs

A DISPLAY command to display the contents of the
#LINE variable which contains the current line number

A PRINT command to display the input values and the
value of A ‘

After the trap is established, the LIST,GROUP command
displays the commands comprising the trap body.

Subroutine AREA is called three times; each time the
breakpoint is detected, the commands in the sequence are
executed.

GROUPS

A group is a sequence of commands established and
assigned a name during a debug session, but not explicitly
associated with a trap or breakpoint. A group exists for
the duration of the session and can be executed by
entering an appropriate READ command. The command
to establish a group is:

SET,GROUP,name [

where name is a name by which you will reference the
group. The left bracket activates collect mode, as with
trap and breakpoint bodies. Any number of CID
commands subsequently: entered become part of the
sequence until you terminate the sequence by entering a
right bracket.

To execute a group issue the command:

READ,name

where name is the group name assigned in the
SET,GROUP command. You can issue a READ command
directly from the terminal while CID is in interactive
mode, or from another command sequence. In response to
a READ command, CID executes the commands in the
group. After a group has been executed, control
automatically returns to CID if the READ was entered
from the terminal, or to the next command in the
sequence that issued the READ,

60482700 A

CYBER INTERACTIVE DEBUG
?set,breakpoint,p.area_1l.7 [=

Set breakpoint at line 7 of subroutine AREA and activate

IN COLLECT MODE
?message,"in subroutine area"

?display,#line
?print*,"input is ",x1,y1,x2,y2,x3,y3
2print*,"area is ",a

?] -

~g———— message, current line number, input values, and final

collect mode.

Breakpoint body. Commands are included to display

result.

Turn off collect mode.

END COLLECT
290 -

IN SUBROUTINE AREA

#LINE = P.AREA_L.7

INPUT IS 6. 17 .5 2. =1. 1.2
AREA IS .54999999999999

IN SUBROUTINE AREA

#LINE = P.AREA _L.7

INPUT IS 6.1 2. .1 -4. 3.2 7.
AREA IS 23.699999999999

IN SUBROUTINE AREA
$LINE = P.AREA_L.7

INPUT IS .2 ~2.9 -~1.3 8. 5.6 2.8
AREA IS 33.784999999999

*T $17, END IN P.RDTR L.7
?

STOP
1.199 CP SECONDS EXECUTION TIME
quit

DEBUG TERMINATED

~———e On each pass through AREA, the breakpoint is detected

Initiate program execution.

and the commands in the body are executed.

Figure 5-1. Debug Session Illustrating Breakpoint With Body

A group can be used when the same sequence of
commands is -to be executed at different locations in a
program. A trap or breakpoint body is executed only when
the trap or breakpoint occurs, but a group can be executed
at any time. A READ command can be included in any
command sequence, allowing nesting of groups. Following
is an example of a simple group definition:

SET,GROUP,GRPA [
X=Y+Z
PRINT*,X,Y,Z

]

This command sequence can be executed by issuing the
command: .

READ,GRPA

When a group is established, it is assigned a number in the
same manner as traps and breakpoints. You can refer to a
group by number or by name in the LIST, CLEAR, and
SAVE commands.

You can list the commands comprising a group with the
following commands:

LIST,GROUP
List the names and numbers of all groups defined
for the current debug session; does not list the
commands contained in the groups.

60482700 A

LIST,GROUP,name; ,namey,...
List the commands contained in the specified
groups.

LIST,GROUP,#ny ,#n3,...

List the commands contained in the groups
identified by the specified numbers.

Normally, a group exists for the duration of a debug
session. You can remove a group or groups from the
current debug session by entering one of the following
commands:

CLEAR,GROUP
Remove all currently defined groups.

CLEAR,GROUP,name} ,name2,...
Remove the specified groups.

CLEAR,GROUP,#n;,#ny,...

Remove the groups identified by the specified
numbers.

Figures 5-2 and 5-3 illustrate debug sessions using groups.

. In figure 5-2, two breakpoints are set in subroutine SETB.

When either breakpoint is reached, the READ command is
issued from the terminal. In figure 5-3, the same
breakpoints are established, except that a body containing
a READ command is defined for each. This causes the
body to be executed automatically when the breakpoints

5-3

CYBER INTERACTIVE DEBUG
?set,group,grpa [

IN COLLECT MODE
?message,"breakpoint in getb"

?display,#line
?print*,"k= " ,k," b= ",b
?]

END COLLECT
?set,breakpoint,p.setb_1.6

?set,breakpoint,p.setb 1.9

290 -

*B #2, AT P.SETB L.9

?read,grpa --=

BREAKPOINT IN SETB
#LINE = P.SETB_L.9

K= 1 B=1. 1. 1. 1. 1.
290 -

*B 41, AT P.SETB L.6

?read,grpa--=

BREAKPOINT IN SETB

$LINE = P.SETB_L.6

K= 2 B= ~1. ~1. =1, ~1, ~1.
?2quit

DEBUG TERMINATED

Establish group GRPA. Commands are included to display
a message, the current line number, and the values of the
variable K and the array B.

Set breakpoints at the RETURN statements in SETB.
Initiate program execution.

Initiate execution of commands in GRPA while program
execution is suspended at line 9.

Resume program execution.

Initiate execution of commands in GRPA while program
execution is suspended at line 6.

Figure 5-2. Debug Session Illustrating Group Execution Initiated at the Terminal

are encountered, with no intervention from the user. By
defining a single group, instead of a body for each
breakpoint, it is necessary to enter the command sequence
only once. The group is listed with the LIST,GROUP
command.

In figure 5-3, note that there are three levels of
execution: the program, the breakpoint body, and the
group. When the breakpoint is reached, the program is
suspended and execution of the breakpoint body is
initiated. When the READ command is encountered,
execution of the breakpoint body is suspended while the
group is executed. When execution of the group is
complete, execution of the suspended breakpoint body
resumes at the command following the READ. When
execution of the breakpoint body is complete, execution
of the suspended program resumes.

Groups are especially useful when the same sequence of
commands is to be executed at more than one location
within a program. An example of this is illustrated in
figure 5-4. The program MATOP defines two matrices
and calls subroutines to add, subtract, and multiply the
matrices and store the results in a work area called
MWRK. The purpose of the debug session is to print the
contents of MWRK after each subroutine call. To
accomplish this a group named PRNT is established
containing appropriate PRINT commands. After each

5-4

subroutine call, a breakpoint is set with a body containing
a command to execute the commands in group PRNT.
When each breakpoint is encountered, the group
commands are automatically read and executed. The
debug session in figure 5-5 is identical except that the
command READ,PRNT is issued from the terminal instead
of a breakpoint body. :

ERROR PROCESSING DURING
SEQUENCE EXECUTION

When CID is in collect mode and you are defining a
command sequence, CID scans each command you enter
for syntactic errors. If a syntactic error is detected, CID
displays an error message and ? prompt, after which you
can reenter the command. Other errors, however, such as
nonexistent line number or variable name, cannot be
detected until CID attempts to execute the command.

CID issues normal error and warning messages during
sequence execution. When an error or warning condition
is detected, CID suspends execution of the sequence and
issues a message followed by an input prompt (? for error
messages; OK? for warning messages) on the next line.
You can instruct CID to disregard the command, replace
the command with another command, or, in the case of
warning messages, execute the command. The most

60482700 A

CYBER INTERACTIVE DEBUG
?set,group,grpa [

IN COLLECT MODE
?message,"breakpoint in setb"

?display,#line
?print*,"k= ",k," b= “",b

?]

IN COLLECT MODE
?read,grpa

?]

END COLLECT
?set,breakpoint,p.setb_1.9 [

IN COLLECT MODE

?read,grpa
?]

END COLLECT
?set,breakpoint,p.setb 1.6 | 2

END COLLECT
?list,breakpoint,$1,$2 =

*B #1 = P.SETB L.6
SET,BREAKPOINT,P.SETB L.6 [
READ,GRPA

|

*B #2 = P.SETB L.9
SET,BREAKPOINT,P.SETB_L.9 [
READ,GRPA

)|

290 —-=

BREAKPOINT IN SETB
$LINE = P.SETB_L.9
K= 1 B=1. 1. 1. 1. 1.

BREAKPOINT IN SETB h
#LINE = P.SETB_L.6
K= 2 B= -1. -1. -1. ~-1. ~1.
STOP
.576 CP SECONDS EXECUTION TIME
*T §17, END IN P.MAIN L.8
?2quit

DEBUG TERMINATED

Establish group GRPA. Commands are included to display
a message, the current line number, and the values of the
variable K and the array B.

Set breakpoints at lines 6 and 9 of SETB. Define a body
for each breakpoint which contains a READ command to
initiate exectuion of the commands in GRPA.

List the definitions of breakpoints 1 and 2.

Initiate program execution.

The breakpoints at lines 6 and 9 are detected and the
READ commands are automatically executed, resulting
in execution of the commands in GRPA.

Figure 5-3. Debug Session Illustrating Group Execution Initiated From Breakpoint Body

useful ways in which you can respond to error and warning
messages are summarized as follows:

User Response Debug Action

OK or YES For warning messages
only, execute the
command.

NO Disregard the command.

Execution resumes at
the next command in
the sequence.

60482700 A

NO,SEQ Disregard the command
and all remaining com-
mands in the sequence.

Any CID command Execute the specified

command line in place

of the current command
and resume execution
of the sequence.

Refer to the CYBER Interactive Debug reference manual
for other valid responses to error and warning messages.

5-5

Program MATOP:

1 PROGRAM MATOP 74/74

PROGRAM MATOP
DIMENSION MAT1(3,3),MAT2(3,3),MWRK(3,3)
DATA MAT1/2,6,4,3,8,9,7,5,8/

1, MAT2/1,0,0,0,1,0,0,8,1/

5 N=3

CALL MATADD(N,MAT1,MAT2,MWRK)
CALL MATSUB (N,MAT1,MAT2,MWRK)
CALL MATMPY(N,MAT1,MAT2, MWRK)

STOP
18 END

Session Log:

CYBER INTERACTIVE DEBUG
?set,group,prnt |

IN COLLECT MODE
?message,"contents of mwrk"

?display,#line

?print* ,mwrk(1,1) ,mwrk(1,2) ,mwrk(1,3)
?print* ,mwrk(2,1) ,mwrk(2,2) ,mwrk(2,3)
?Print*}mwrk(3,1),mwrk(3,2).mwrk(3,3)
?}]

END COLLECT

TS ID

Establish group PRNT. The commands in this group display
'> - the values of array MWRK.

/

?list,group,prnt =

*G #1 = PRNT

SET ,GROUP,PRNT [

MESSAGE, "CONTENTS OF MWRK"
DISPLAY,#LINE

PRINT* ,MWRK(1,1) ,MWRK(1,2),MWRK(1,3)
PRINT* ,MWRK(2,1) ,MWRK(2,2) ,MWRK(2,3)
PRINT* ,MWRK(3,1) ,MWRK(3,2) ,MWRK(3,3)
] R

?set ,breakpoint,1.7 [

IN COLLECT MODE
?read,prnt

?]

END COLLECT
?set ,breakpoint,1.8 [

IN COLLECT MODE
?read,prnt

List the definition of group PRNT.

Set breakpoints at lines 7, 8, and 9. In each breakpoint

?}]

END COLLECT
?set ,breakpoint,1.9 [

IN COLLECT MODE
?read,prnt

?]

END COLLECT
290 =

body, include a READ command to initiate execution of
the commands in PRNT.

Initiate program execution.

5-6

Figure 5-4. Program MATOP and Debug Session Illustrating Command Group Execution (Sheet 1 of 2)

60482700 A

CONTENTS OF MWRK
$LINE = P.MATOP_L.7

337 ———
6 95

499

CONTENTS OF MWRK

#LINE = P.MATOP_L.8 l

Breakpoint detected at line 7; group executed.

137
6 75
497
CONTENTS OF MWRK
$LINE = P.MATOP L.9 |

Breakpoint detected at line 8; group executed.

Breakpoint detected at line 9; group executed.

237 ——

685

498
STOP :
1.768 CP SECONDS EXECUTION TIME

*T $17, END IN L.9

2quit:

DEBUG TERMINATED

Figure 5-4. Program MATOP and Debug Session Illustrating Command Group Execution (Sheet 2 of 2)

An example of error processing during sequence execution
is illustrated in figure 5-6. When the group named CGR is
executed CID issues an error message and a warning
message. In response to the error message, NO is entered
instructing CID to ignore the command and resume
execution of the sequence. In response to the warning
message, a new command is entered; CID automatically
executes the new command and resumes execution of the
sequence.

RECEIVING CONTROL DURING
SEQUENCE EXECUTION

Normally, a command sequence executes to completion
without returning control to CID. There might be
instances, however, when you would like to temporarily
gain control during execution of a sequence for the
purpose of entering other commands. You can do this
either with the PAUSE command or by issuing a terminal
interrupt (described later in this section).

PAUSE COMMAND

The PAUSE command can be included in a command
sequence to suspend execution of the sequence at that
point. The formats of the PAUSE command are:

PAUSE
PAUSE,"string"

where string is any string of characters. When CID
encounters this command in a sequence, execution of the
sequence is suspended and CID gets control, allowing you
to enter commands. If string is specified, the character
string is displayed.

The PAUSE command can be issued only from a command
sequence; it cannot be entered directly from the terminal.

When a PAUSE command is issued from a trap or
breakpoint body, CID displays the trap or breakpoint
message, followed by any message included in the PAUSE
command, and prompts for user input.

60482700 A

Execution of the suspended sequence can be resumed by
either the GO or the EXECUTE command. These
commands are explained in the following paragraphs.

GO AND EXECUTE COMMANDS

When execution of a command sequence has been
suspended because of a PAUSE command, you can either
resume execution of the sequence with the GO command
or return control to your program with the EXECUTE
command. The functions of these commands are
summarized as follows:

e EXECUTE always resumes execution of the user
program regardless of whether the command is issued
following suspension because of a trap or breakpoint,
following suspension because of a PAUSE command,
or from a command sequence.

o GO resumes execution of the most recently suspended
process. If issued following: occurrence of a trap or
breakpoint, GO resumes execution of the user
program, If issued following a PAUSE command, GO
resumes execution of the suspended sequence. If
issued from a sequence, GO resumes execution of the
sequence or program that had control when sequence
execution was initiated.

When issued from the terminal following detection of a
PAUSE command, GO resumes execution of the suspended
command sequence. Following is an example of a PAUSE
command issued from a sequence:

SET,BREAKPOINT,L.16 [,
MESSAGE,"BREAKPOINT AT LINE 16"

X=0.0

PRINT*,A,X

PAUSE,"SEQUENCE EXECUTION SUSPENDED"
A=0.0

1

This definition establishes a breakpoint with a body at
line 16 of the home program. When the breakpoint is
encountered during program execution, execution of the

CYBER INTERACTIVE DEBUG
?set,group,prnt [A

IN COLLECT MODE
?message, "contents of mwrk"

?display,#line

?print* mwrk(1l,1) ,mwrk(1,2) ,mwrk(1l,3)
?print* mwrk(2,1) ,mwrk(2,2) ,mwrk(2,3)
2print* mwrk(3,1) ,mwrk(3,2) ,mwrk(3,3)
?] }

END COLLECT
?set,breakpoint,1.7

><——-— Establish a group to print the values of array MWRK.

?set,breakpoint,1.8 ;-
?set,breakpoint,1.9
?go

*B #1, AT L.7
?read,prnt -

Set breakpoints at lines 7, 8, and 9.

Initiate execution of group PRNT while program

CONTENTS OF MWRK
#LINE = P.MATOP_L.7
337

695

4 99

?go

*B #2, AT L.8

execution is suspended at line 7.

v

?read,prnt —-=-

CONTENTS OF MWRK
#LINE = P.MATOP L.8
137
6 75
497
2go

*B $3, AT L.9

Initiate execution of group PRNT while program
execution is suspended at line 8.

?read,prnt --=

CONTENTS OF MWRK
$LINE = P.MATOP_L.9
237
685
498

290

*T #17, END IN L.9
?
STOP .
. 1.818 CP SECONDS EXECUTION TIME
quit

DEBUG TERMINATED

Initiate execution of group PRNT while program
execution is suspended at line 9.

Figure 5-5. Debug Session Illustrating READ Command Entered at the Terminal

command sequence begins: an informative message is
displayed, the variable X is set to 0.0, and the values of A
and X are displayed; the PAUSE command suspends
execution of the sequence, displays the specified string,
and gives interactive control to the user. At this point,
two processes are suspended: the user program and the

command sequence. If a GO command is issued from the
terminal, sequence execution resumes: the variable A is
set to 0.0 and control automatically returns to the user
program at line 16. If, however, an EXECUTE command
is issued from the terminal, contro! immediately transfers
to line 16 of the user program and execution resumes.

60482700 A

?list,group,gga -

*G #1 = GGA
SET,GROUP,GGA [
X=1.0

C=1.0

PRINT*, (A(I),I=1,58)
PRINT*,"X=",X
]

?read,gga -==

List definition of group GGA.

Initiate execution of commands in GGA.

?2N0 —-=

*CMD ~ (C=1.8) *ERROR ~ NO PROGRAM VARIABLE C —e———— |ndicated command contains an error.

OK ?print*,(a(i),i=1,5)

CMD -~ (PRINT,(A(I),I=1,58)) *WARN ~ SUBSCRIPT OUT OF RANGE ’

Ignore preceding command and resume execution.

" Replace preceding command with new command

1. 2. 3. 4. 5.
X=1.
?

and resume execution.

Figure 5-6. Debug Session Illustrating Error Processing During Sequence Execution

When issued from within a command group, GO causes an
immediate exit from the sequence and a resumption of the
process that was active when the sequence was invoked.
If the READ command that called the group was issued
from the terminal, a ? prompt is displayed and interactive
mode is resumed. If the READ was issued from another
command sequence (group, trap, or breakpoint body),
execution of that sequence resumes at the command
following the READ. For example, consider the following
group definition:

SET,GROUP,TSTX [
X=X+DX
IF(X.LT.1000.0) GO
X=0.0

]

If the command READ,TSTX is issued from the terminal,
then the commands in the sequence are executed: the
current value of X is replaced by X+DX and is tested. If
X is greater than or equal to 1000.0, sequence execution
continues with the command X=0.0 and CID gets control.
If X is less than 1000.0, the GO command immediately
transfers control to CID. If the IF(X.LT.1000.0) GO
command . is replaced with IF(X.LT.1000.0) EXECUTE,
then program execution immediately resumes (CID does
not get control).

Now suppose the READ command is issued from another
sequence, as in the following example:

SET,BREAKPOINT,L.5 [
READ, TSTX
LIST,VALUES

]

The READ command is executed automatically when the
breakpoint at line 5 is detected, which initiates execution
of the commands in TSTX. If X is less than 1000.0, the
GO command resumes execution of the most recently
suspended process, in this case the commands in the
breakpoint body: ‘LIST,VALUES is executed and program
execution resumes at line 5. If the IF(X.LT.1000.0) GO
command is replaced with IF(X.LT.1000.0) EXECUTE,
execution of the user program immediately resumes at
line 5 in this case.

60482700 A

The debug session in figure 5-7 illustrates the PAUSE
command. This session was produced by executing
program AREA, shown in figure 3-1, under CID control.
The purpose of this session is to suspend execution at the
beginning of the subroutine in order to display the input
values and change them if necessary and to suspend
execution at the end of the subroutine in order to display
the calculated area. To accomplish this, a breakpoint
with a body is set at.line 2 of subroutine AREA. Two
commands are included in the body: a PRINT command
and a PAUSE command. A STORE trap is then established
for the variable A. A body containing a command to print
the value of A is defined for this trap. On each of the
three passes through subroutine AREA, the commands in
the sequence are executed automatically. The PAUSE
command suspends execution of the breakpoint body.
When the PAUSE command is detected on the first pass,
GO is entered to resume sequence execution. (In this
case, GO and EXECUTE have the same effect since
PAUSE is the last command in the sequence.) On the next
two passes through the subroutine, assignment commands
are entered to change the values of some of the input
variables while execution is suspended because of the
PAUSE command.

Both the GO and EXECUTE commands can be used to
resume program execution at a location other than the
one where execution was suspended. The command forms
are:

GO,loc
EXECUTE,loc

where loc is a program address of the form L.n or S.n.
These command forms resume execution at the location
designated by loc.

These commands can be used to skip sections of code, as
illustrated in figure 5-8. In this example, the main
program passes two values A and B to a subroutine which
calculates a value for C. C is then used in a subsequent
calculation. The programmer wishes to skip the call to
SUB, assigning instead his own value to C. A breakpoint
is set at line 4 to suspend execution immediately before
execution of the CALL statement. When execution is
suspended at the breakpoint location, a value is assigned
to C. Execution is then resumed at line 5, and line 4 is
bypassed.

CYBER INTERACTIVE DEBUG
?set,breakpoint,p.area 1.2 [-=

IN COLLECT MODE
?print*,”"input is ",x1,yl,x2,y2,x3,y3
e

?pause, "changes?"
?}

END COLLECT
?set ,trap,store,a [--=

INTERPRET MODE TURNED ON
IN COLLECT MODE
?print*,"area is ",a---=

?]

END COLLECT
290 -

INPUT IS 0. 1. .5 2. =-1. 1.2 e
*B $1, AT P.AREA_L.Z}

CHANGES?

2g 0=

N N ————

AREA IS .54999999999999

INPUT IS 6.1 2. .1 ~4., 3.2 7.
*B $1, AT P.AREA_L.Z}

CHANGES? —
?x1=0.01

?y1=0.0f

290 =

AREA IS 6.7499999999995

INPUT IS .2 ~2.9 -1.3 8. 5.6 2.8-w—-—
*B #1, AT P.AREAnL.Z}

CHANGES?

2x3=1.9 -

290 =

AREA IS 13.539999999999
*P $17, END IN P.RDTR L.7
?
STOP
8.600 CP SECONDS EXECUTION TIME

quit

DEBUG TERMINATED

Set breakpoint at line 2 of AREA and turn on collect mode.

Breakpoint body.

Set STORE trap for variable A and turn on collect mode.

Trap body.

Initiate program execution.

Breakpoint detected on first pass through AREA;
sequence execution initiated.

PAUSE command suspends execution, displays message,
and causes breakpoint message to be displayed.

Resume sequence execution.

Breakpoint detected on second pass through AREA.

PAUSE command suspends sequence execution.

Assign new values to X1 and Y1.
Resume sequence execution.

Breakpoint detected on third pass through AREA.

PAUSE command suspends sequence execution.
Assign new value to X3.

Resume sequence execution.

Figure 5-7. Debug Session Illustrating PAUSE Command

CONDITIONAL EXECUTION OF
CID COMMANDS

CID allows conditional execution of commands in much
the same manner as FORTRAN Extended does for
executable statements. CID provides an IF command that
is similar to the FORTRAN IF statement and a JUMP
command that is similar to the FORTRAN GO TO
statement.

5-10

IF COMMAND
The format of thé IF command is:

IF (expr) command

where expr is a relational expression and command is any
valid CID command. If the relational expression is true,
CID executes the command.

60482700 A

A=1.9

B=2.0

CALL SUB(A,B,C)
5 D=C**2+1.9

STOP
END

C=A+B
RETURN
END

CYBER INTERACTIVE DEBUG
?set,breakpoint,1.4

?2go
*B #1, AT L.4

1 PROGRAM EX 74/74 T8 ID

PROGRAM EX(OUTPUT)

WRITE 166,A,B,C,D
169 FORMAT(" VALUES ARE ",4F6.2)

SUBROUTINE SUB(A,B,C)

?2c=4.0

Execution suspended at line 4 of main program.

Assign value to C.

2go,1.5 -

VALUES ARE 1.00 2.990 4.906 17.09

*T $17, END IN L.8
?

sTOP i
.149 CP SECONDS EXECUTION TIME
guit

DEBUG TERMINATED

Resume execution at line 5.

Figure 5-8. Program EX and Debug Session Illustrating GO Command

The form of a relational expression is the same as in
FORTRAN. The following relational operators are valid:

EQ. .GT.
-NE. JLE.
LT, .GE.

The following restrictions apply to the IF command:

Only variables defined in the current home program
can appear.

CID variables cannot be used.

Function references and exponentiation are not
allowed.

Address qualification is not allowed.

Although the consequent command in an IF can be any
valid CID command, it is usually an assignment, PRINT,
JUMP, or GO command, as in the following examples:

IF(X.GT.Y+Z)PRINT*,"VALUES ARE",X,Y

Print the values of X and Y if X is greater than
Y+Z.

IF(IFIRST.EQ.1)ZZ=XX*2.0

IF IFIRST is equal to 1, then the current value of
ZZ7 is replaced by the value XX times 2.0.

60482700 A

IF(A().GT.0.0)GO,L..50
If the value of A(l) is greater than zero, control
transfers to line 50 of the program.

IF(A(2).NE.B(2))JUMP,L ABL
If the value of A(2) does not equal the value of
B(2), control transfers to the commands
following the label LABL in the current
command sequence.

Although you can issue an IF command from the terminal,
as described in section 3, this command is especially
powerful when used in command sequences. You can use
the IF command to perform a test and to conditionally
transfer control to another statement in the sequence or
exit from the sequence. The technique for doing this is
similar to that of FORTRAN. In FORTRAN, a GO TO
statement causes a branch to another executable
statement. In CID, the GO or EXECUTE command is used
to exit from the current sequence, as in the following
examples:

IF(A.GT.B)GO
If the value of A is greater than the value of B,
exit from the current sequence and resume
execution of the most recently suspended process.

IF(I.NE.0)GO,S.20
If the value of I is not equal to zero, exit from
the current sequence and resume program
execution at statement 20,

IF(X+T.LT.Y+S)EXECUTE
If the value of X+T is less than the value of Y+S,
exit from the current sequence and resume
program execution.

The JUMP and LABEL commands are used to transfer
control within a sequence.

JUMP AND LABEL COMMANDS
The format of the JUMP command is:
JUMP,name

where name is a label declared in a LABEL command.
The function of the JUMP command is identical to the
FORTRAN GO TO statement. When CID encounters a
JUMP command, control transfers to the command
following the label.

A label is established within a command sequence by the
following command:

LABEL ,name

where name is a string of one through seven letters or
digits. The LABEL command is not executed by CID; its
sole purpose is to provide a destination for a JUMP
command. When a JUMP command is executed, control
transfers to the command following the LABEL command.

The JUMP command can be used in conjunction with the
IF command to perform a conditional branch, as in the
following command sequence example:

IF(X.LT.100.0)JUMP,LAB1
X=0.0

GO

LABEL,LAB1

X=X+1.0

If the value of X is less than 100.0, 1.0 is added to X and
program execution resumes; if X is not less than 100.0, X
is set to 0.0 and program execution resumes.

A debug session using the IF, JUMP, and LABEL
commands is illustrated in figure 5-9. The program
executed to produce this session appears in figure 3-4.
The purpose of this session is to suspend program
execution at the beginning of subroutine SETB and store
the value 3.0 into each word of the array B if K is equal
to 3. If K is not equal to 3, execution is to proceed
normally. To accomplish this, a breakpoint with a body is
set at line 3 of SETB. The first command in the body
tests K: if K is not equal to 3, program execution
resumes at line 3; otherwise, execution of the sequence
continues. The remaining commands of the sequence
constitute a loop that stores 3.0 into B. The variable K is
used as an index and counter since it is not required by the
program. When K is equal to the array dimension N,
program execution resumes at line 9. A breakpoint is set
in the main program at the first subroutine call so that K
can be assigned a value of 3.

As you are undoubtedly aware by now, command
sequences using the conditional execution capability can
become quite complicated. You should, however, attempt
to keep sequences short and simple so that you don't spend
mere time debugging the sequence than would be required
to debug your program.

5-12

COMMAND FILES

In addition to executing command sequences established
within a debug session, you can execute command
sequences stored on a separate file. You can create such
a file using a text editor and include any sequence of CID
commands in the file. Command files can also be created
with the SAVE command (discussed under Saving Trap,
Breakpoint, and Group Definitions). There are two
reasons why you might want to create a separate file of
CID commands:

e By storing commands on a file you have a permanent
copy of the command sequence that can be used for
future debug sessions.

e Editing a file of commands using a text editor is
much easier than editing a sequence of commands in
a group or body while executing under CID control.
(See Editing a Command Sequence.)

To execute the commands in a file, enter the command:
READ,Ifn

where Ifn is the file name. CID reads the file and
automatically executes the commands, just as for a body
or group. Control returns to CID when execution of the
sequence is complete.

Executing commands from a file can be time-consuming if
the sequence is executed many times since the file must
be read each time the sequence is executed. If a
command sequence is to be executed many times in a
single session, a more efficient method of executing: the
commands is to create a command file containing a
SET,GROUP command and to include the command
sequence in the group. When the file is read by the READ
command, the SET,GROUP command is automatically
executed and the command sequence is established as a
group within the debug session. The group can
subsequently be executed without the necessity of reading
the file. For example, suppose a file containing the
commands:

X1=Y1+Z1
X2=Y2+22
PRINT#*,X1,X2

is created via a text editor and assigned the name COMF,
The command READ,COMF must be issued whenever the
sequence is to be executed. Now suppose instead the
following file is created:

SET,GROUP,GRPX [
X1=Y1+Z1
X2=Y2+Z2
PRINT*,X1,X2

]

Then the command READ,COMF reads the file and causes
the SET,GROUP command to be executed, establishing
GRPX for the current session. Thereafter, the command
READ,GRPX executes the commands in the group and the
file COMF is only read once.

The use of NOS and NOS/BE text editors to create and

edit files containing CID commands is discussed under
Editing a Command Sequence.

60482700 A

CYBER INTERACTIVE DEBUG
?set,breakpoint,p.setb 1.3

IN COLLECT MODE

?2if(k.ne.3)go =
?2k=1

?label,ql ==

?b(k)=3.0
?print*,“b(",k,*)=",b(k)

?if(k.ge.n) go,1.9

?2k=k+] -

2jump,ql -
3 :

END COLLECT
?set,breakpoint,1.5

?go

*B $2, AT
2k=3

L.5

?go

B(1)=3.
B(2)=3.

B{(3)=3.
B(4)=3.
B{(5)=3.

*T $17, END IN P.MAIN_L.8 =
?

STOP

1.754 CP SECONDS EXECUTION TIME
print¥*,b

-1.
?2quit

~l. =1l. ~1. ~1.

DEBUG TERMINATED

[~——————— Set breakpoint and enter collect mode.

IF K NE 3 transfer control to program.

Define label Q1.

{f loop has completed, resume program execution at line 9. .

Increment counter.

Resume execution of sequence at command following label Q1.

Suspend program execution at line 5 to assign new value
to K.

Breakpoint detected at line 3 of SETB; group commands
executed.

Program runs to completion.

Figure 5-9. Debug Session Illustrating JUMP and LABEL Commands

SAVING TRAP, BREAKPOINT, AND
GROUP DEFINITIONS

As with other CID commands, command sequences exist
only for the duration of the session in which they are
defined. CID provides the capability of saving group,
trap, and breakpoint definitions on a separate file. You
can print this file or make it permanent. There are two
basic reasons for copying CID definitions to a file:

e To preserve a copy of the definitions for use in the
current or in subsequent debug sessions. ‘

e To facilitate the editing of a command sequence with
the system text editor.

60482700 A

The command to save CID definitions has the following
forms: .

SAVE,BREAKPOINT,Ifn,list
Copy to file Ifn the definitions of the breakpoints
specified in list; list is an optional list of
breakpoint locations (S.n or L.n) or breakpoint
numbers (#n) separated by commas. If list is
omitted all breakpoints are saved.

SAVE,TRAP,Ifn,type,scope
Copy to file Ifn the definitions of the traps of
the specified type defined for the specified
scope. Type and scope are optional and are the
same as for the SET,TRAP command.

5-13

SAVE,GROUPR,Ifn,list
Copy to file Ifn the groups specified in list; list is
an optional list of group names or numbers (#n)
separated by commas. If list is omitted, all
groups defined for the current session are saved.

The SAVE command copies the complete definition of the
specified traps, breakpoints, or groups, including the
original SET command, to the specified file. When a
SAVE command is executed, the file is written, closed,
and rewound. Therefore, you should specify a unique file
name for each SAVE command issued during a debug
session; otherwise, the original information is
overwritten. You can, however, save an entire CID
environment, including all trap, breakpoint, and group
definitions, on a single file by issuing the command:

SAVE,, Ifn

This is the only form of the SAVE command that allows
you to mix trap, breakpoint, and group definitions on a
single file.

Some examples of SAVE commands are as follows:

SAVE,BREAKPOINT,SBPF »
Copy to file SBPF all breakpoints currently
defined.

SAVE,BREAKPOINT,BPFILE,L.10,P.SUBX S.20
Copy to BPFILE the definitions of the
breakpoints established at line 10 of the home
program and statement 20 of subroutine SUBX.

SAVE,BREAKPOINT,FILEA,#2,#5
Copy to FILEA the definition of breakpoints #2
and #5.

SAVE,TRAP,TFILE
Copy to TFILE all traps currently defined.

SAVE,TRAP,TTT,RJ,P.PROGA
Copy to TTT the definition of the RJ trap
established in program unit PROGA.

SAVE,GROUP,GFIL,WRT,RDD,GRPX
Copy to GFIL the definitions of the groups
named WRT, RDD, and GRPX.

Definitions stored on a file can be altered (as described
under Editing a Command Sequence) and then restored in
the current or in a subsequent session. The command to
restore the definitions stored on a file is:

READ,Ifn

where lfn is the file containing the definitions. You can
issue a READ command in the current session or in a later
session. If a READ,lfn is issued in the current session, and
the definitions previously saved on 1fn have not been
removed by the appropriate CLEAR command, CID
displays a message of the form:

EXISTING BREAKPOINTS WILL BE REDEFINED
oK?

5-14

A positive response (YES or OK) causes the existing
definitions to be redefined according to the information in
the file; a negative response (NO) causes the read
command to be ignored.

The following READ commands assume that GFIL and
TTT are as defined in the preceding example:

READ,TTT
Restore the RJ trap definition contained in file
TTT.

READ,GFIL
Restore the group definitions contained in file
GFIL. :

A debug session using the SAVE command is illustrated in
figure 5-10. The program shown in figure 3-1 is executed
to produce this session. A breakpoint with a body is
established in the main program and in subroutine AREA,
after which execution is initiated. The program reads the
three records contained in TRFILE. On each pass through
the program, the command sequences are executed. After
the program terminates, CID gets control because of the
END trap, and a SAVE,BREAKPOINT command is issued
to save the current breakpoint definitions on the file -
named AFILE. The session is terminated, the binary file
LGO is rewound, and a new session is initiated. The
command READ,AFILE restores the breakpoints for the
new session. The contents of AFILE are shown in
figure 5-11.

The debug sessions in figure 5-12 illustrate the
SAVE,GROUP command using the program shown in
figure 5-4. The command group PRNT, shown in
figure 5-4, is saved on the file named GFILE at the end of
the first debug session. At the beginning of the second
session, the command READ,GFILE restores the group
definition. Breakpoints are set at lines 7, 8, and 9 of
MATOP. When each breakpoint is encountered the
command READ,PRNT is issued to execute the group.
Note that this command could have been placed in a body
for each breakpoint. The groups would then have been
executed automatically, without intervention from the
user.

EDITING A COMMAND SEQUENCE

When you detect an error in or wish to make a change to a
command sequence in a trap body, breakpoint body, or
group you can remove the definition with the appropriate
CLEAR command and reenter the entire sequence. This
procedure can be time-consuming for lengthy sequences,
however.

CID provides two alternate methods of making changes to
a command sequence:

e You can save the trap, breakpoint, or group definition
on a separate file and edit the file.

e You can turn on veto mode (described later in this
section) and edit the sequence interactively.

To apply the first method you must temporarily exit from
the current debug session.

60482700 A

First Session: Breakpoint Definitions Saved.

CYBER INTERACTIVE DEBUG
?set ,breakpoint,1.4 |

IN COLLECT MODE
?display,#line

?list,values,p.rdtr
?]
END COLLECT

Set breakpoint with body at line 4 of main program.

Set breakpoint at line 6 of main program.

?2set ,breakpoint,1.6
?set,breakpoint,p.area_1.7

IN COLLECT MODE
?display,#line

?print*,"area is",a

:

\
{

|

}4——- Set breakpoint with body at line 7 of subroutine AREA.

?] /
END COLLECT » i
290 - Initiate program execution.
$LINE = P.RDTR L.4 = Breakpoint detected at line 4; sequence execution initiated.
P.RDTR
A= ~I, Xl = 9.0, X2 = .5, X3 = ~1.9, Yl =1.9, Y2 = 2.9
¥3 = 1.2 :
#LINE = P.AREA_L.7 Breakpoint detected at line 7 of AREA; sequence execution initiated.
AREA IS .54999999999999
*B $2, AT L.6 (OF P.RDTR) == Breakpoint detected at line 6.
?save,breakpoint,afile Copy breakpoint definitions to file AFILE,
?quit
DEBUG TERMINATED
Second ‘Session: Breakpoint Definitions Restored.
..rewind, 1go
..1go
CYBER INTERACTIVE DEBUG
.?read,afile = Restore breakpoint definitions contained in AFILE.
?list,breakpoint —e— List breakpoint locations.
*B $1 = L.4 , *B #2 = L.6, *B #3 = P.AREA_L.7
?
2g0 - Initiate program execution.
#LINE = P.RDTR L.4
P.RDTR
A= -1, X1l = 9.0, X2 = .5, X3 = ~1.0, Yl = 1.0, Y2 = 2.9
Y3 = 1.2 ‘
$LINE = P.AREA_L.7
AREA IS .54999999999999
*B #2, AT L.6 (OF P.RDTR)
?2quit

DEBUG TERMINATED

Figure 5-10. Debug Sessions Illustrating SAVE Command

60482700 A

5-15

SET HOME P.RDTR

SET ,BREAKPOINT,L.4 |
DISPLAY,#LINE
LIST,VALUES,P.RDTR

]

SET HOME P.RDTR

SET BREAKPOINT L.6
SET,BREAKPOINT,P.AREA_L.7 |
DISPLAY,#LINE
PRINT*,"AREA IS",A

1

Figure 5-11. Listing of Breakpoint File AFILE

SUSPENDING A DEBUG SESSION

CID provides the capability of suspending the current
session, returning to system command mode, and then
resuming the session at a later time. This feature can be
used whenever you wish to perform a function outside of
CID, but it is especially useful for leaving a session to edit
a command sequence.

The command:
SUSPEND

suspends the current session; copies the complete
definition of the session environment, including trap,
breakpoint, and group definitions to a file; and returns
control to the operating system.

To resume the suspended session, issue the command:
DEBUG(RESUME)

This command restores the session to its status as it
existed at the time of suspension. All traps, breakpoints,
and groups have their original definitions, and all program
and debug variables have their original values.

You do not have access to the file created by a SUSPEND
and you cannot use SUSPEND and RESUME to continue a
debug session at a subsequent terminal session. Once you
have logged out, values of program and debug variables
are lost. Group, trap, and breakpoint definitions can be
recovered only if you have used the SAVE command to
write them to a file and have made the file permanent.

DEBUG(RESUME) does not restore the status of any files
attached to your program. You should therefore avoid any
operations, such as REWIND, that would change the status
of these files if you intend to continue the debug session.
You should not attempt to execute or modify the program
you are debugging while the session is suspended.

EDITING TRAP BODIES, BREAKPOINT BODIES,
AND GROUPS

To edit a trap body, breakpoint body, or command group,
proceed as follows:

1. Save the trap, breakpoint, or group definition with
the appropriate SAVE command.

5-16

2. Suspend the current session with the SUSPEND
command,

3. Use an editor to alter the command sequence.

4., Resume the session with the DEBUG(RESUME)
command.

5. Remove the current trap, bfeakpoint, or group
definition with the appropriate CLEAR command.

6. Establish the altered definition with the READ
command.

Be sure that you do not alter the status of any files
attached to your program while the session is suspended,
as the DEBUG(RESUME) command does not restore these

-to their status at suspension time.

An example of the procedure for editing a command
sequence is shown as performed under NOS/BE
(figure 5-13) and NOS (figure 5-14). The purpose of this"
editing session is to change the command IF(LEQ.0)X=Y
contained in the group named AGRP to IF (LEQ.1) X=Y.

To accomplish this, the debug session is suspended and the
group is saved on the file named GRPFIL.

Under NOS/BE INTERCOM, the command EDITOR calls
the system editor. GRPFIL is made the edit file by the
command EDIT,GRPFIL,SEQ. This command also assigns
a sequence number to each line in the editing file. The
command 140=IF(LLEQ.1) replaces the current contents of
line 140. The current GRPFIL is destroyed, a new one is
created from the current edit file, and edit mode is
terminated. Refer to the NOS/BE Interactive Guide for
Users of FORTRAN Extended for detailed information on
the INTERCOM text editor.

Under NOS, the following commands are used to alter
GRPFIL: : :

EDIT,GRPFIL
Enter edit mode to edit GRPFIL,

LIST;7
List 7 lines.

SET;4
Advance the line pointer & lines.

CHANGE
Replace the line indicated by the line pointer by
the string enclosed in slashes.

LIST
List the line indicated by the line pointer.

END
Exit from edit mode.

When editing is complete, the debug session is resumed by
DEBUG(RESUME) and the group is restored by
READ,GRPFIL, Refer to the NOS Text Editor reference
manual for detailed information on the NOS text editor.

60482700 A

First Session: Group Defined and Saved.

CYBER INTERACTIVE DEBUG
?2set,group,prnt [= Assign group name and activate collect mode.

IN COLLECT MODE
?message, "contents of mwrk")

?display,$#line
?print*,mwrk(1l,1) ,mwrk(1l,2),mwrk(1,3) » ~——————— Group body; contains commands to display message,

) current line number, and contents of MWRK.
?print*,mwrk(2,1) ,mwrk(2,2) ,mwrk(2,3)

?print*,mwrk(3,1) ,mwrk(3,2) ,mwrk(3,3))
2]

END COLLECT .
?save,group,gfile == Copy group definition to file GFILE.

2quit

DEBUG TERMINATED

Second Session: Group Reestablished.

..rewind,1go
- «sl1g0
CYBER INTERACTIVE DEBUé
?read,gfile -= Restore group definitions contained in GFILE.
?list,group —e : : List current group names and numbers.

*G #1 = PRNT o ‘
?list,group,#1 List commands in group #1.

*G #1 = PRNT

SET,GROUP,PRNT [

MESSAGE, "CONTENTS OF MWRK"
-DISPLAY,#LINE

PRINT* ,MWRK(1,1) ,MWRK(1,2) ,MWRK{1,3)
PRINT* ,MWRK{2,1) ,MWRK{2,2) ,MWRK(2,3)
PRINT* ,MWRK(3,1) ,MWRK(3,2) ,MWRK(3,3)
] .
?set,breakpoint,1.7
?set,breakpoint,1.8
?set,breakpoint,1.9

2go

*B $#1, AT L.7 _ » i .
?read,prnt - Initiate execution of the commands in PRNT.

CONTENTS OF MWRK
$LINE = P.MATOP L.7
337

695

499

?

Figure 5-12, Debug Session Illustrating READ and SAVE,GROUP Commands

60482700 A . 5-17

CYBER INTERACTIVE DEBUG
?set,group,agrp [

IN COLLECT MODE
?message,"executing agrp"”

Establish group AGRP.

?display,#line ;=

?x=z

2if(i.eq.0)x=y
'>] .

L4

END COLLECT

?save,group,grpfil,agrp =

?suspend -

Copy AGRP to file GRPFIL.

DEBUG SUSPENDED

Suspend debug session.

..edit,grpfil,seq —=

..1ist,a11 -

Designate GRPFIL as edit file.

List contents of edit file.

186=SET,GROUP,AGRP [
110=MESSAGE, "EXECUTING AGRP"
120=DISPLAY,#LINE
130=X=2
146=1IF(1.EQ.9)
150=X=Y
160=]
.. 14f=if(i.eq.l) =

discard,grpfil

Replace line 140 of edit file.

..save,grpfil,noseq. .«

Destroy current GRPFIL.

Make current edit file the new GRPFIL.

Resume debug session.

..debug(resume) =

CYBER INTERACTIVE DEBUG RESUMED
?clear,group,agrp -

Remove current definition of AGRP.

?read,grpfil =

Establish group definition contained in GRPFIL.

?list,group,agrp -=

*G #1 = AGRP
SET,GROUP,AGRP [
MESSAGE, "EXECUTING AGRP"
DISPLAY,#LINE

X=2

IF(I.EQ.1)

X=Y

]

?

Display commands in AGRP.

Figure 5-13. Editing a Command Sequence Using EDITOR Under NOS/BE INTERCOM

VETO MODE

Veto mode provides a method of interactively altering a
command sequence. When veto mode is on, CID
automatically displays each command in a sequence
before it is executed and allows you to specify whether
the command is to be executed as is, ignored, or replaced
by another command.

To activate veto mode enter the command:

SET,VETO,ON

5-18

Once veto mode has been turned on, it remains on until
turned off by one of the commands:

SET,VETO,OFF
or
CLEAR,VETO

Although veto mode is intended to be used with command
sequences, commands entered interactively are also
subject to veto.

60482700 A

CYBER INTERACTIVE DEBUG
set,group,agrp {

IN COLLECT MODE
message,"executing agrp"

..\’

display,#line -
X=z :
if(i.eq.8)x=y

wW o)) g)

1
END COLLECT

Establish group AGRP.

? save,group,grpfil,agrp =
? suspend - -

Copy AGRP to file GRPFIL.

SRU 7.527 UNTS.

RUN COMPLETE,
batch

$RFL,8.
/edit,grpfil =

Suspend Debug session.

BEGIN TEXT EDITING.

Enter edit mode and designate GRPFIL as edit file.

2 list;7 —-—
SET,GROUP,AGRP | :
MESSAGE , "EXECUTING AGRP"
DISPLAY, $LINE ’
X=z

IF(I.EQ.8)

X=Y

? Set; 4 =

List seven lines of edit file.

Set {ine pointer to line 4.

? list s

- IF(I.EQ.H)
? change

List current line.

ENTER TEXT. -
?Fif(i.eq.l) /
READY.
? list
IF(1I.EQ.1)
? end -

Replace current line.

Leave edit mode. -

END TEXT EDITING.
SEDIT,GRPFIL.
/debug{resume) =

Resume Debug session.

CYBER INTERACTIVE DEBUG RESUMED
2 clear.,qroup.,aqrp -

Remove current definition of AGRP.

Establish new definition of AGRP.

? read,grpfil -
?

Figure 5-14. Editing a Comnmand Sequence Using the EDIT Program Under NOS

When veto mode is on and CID encounters a sequence, CID
displays each command just before it is executed and
follows the command by the user prompt OK?. Valid
responses and subsequent CID action are as follows:

User Response Debuq Action
YES or OK Execute the command.
NO Ignore the command.
YES,SEQ or OK,SEQ Execute the command
and inhibit veto mode
for the remainder of
the sequence.

NO,SEQ Ignore the command and
inhibit veto mode for
the remainder of the
sequence; veto mode
resumes after the
current sequence is
completed.

60482700 A

Any CID command Execute the specified
command or commands
in place of the cur-
rent command. Note
that the new command
does not actually
replace the current
command in the
sequence; if the
sequence is executed
again, the new
command must be
reentered.

An example of veto mode execution is illustrated in
figure 5-15. The group named GRPZ contains the
command X=X-1.0 which is replaced by the command
X=X+1.0 immediately before it is executed. Note that all
commands entered while veto mode is on can be vetoed.
Note also that the commands JUMP,YPI and Y=Y+1.0 are
not reached in the flow of execution and are therefore not
displayed.

5-19

?list,group,grpz =

List the complete definition of group GRPZ.

*G #1 = GRPZ .
SET,GROUP,GRPZ |
IF(X.GT.Y)
JUMP,YP1
X=X~1.0 -

GO

LABEL,YP1
Y=Y+1.0

1

? print*,x,y

1. 2.
set,veto,0oNn =

Command to be replaced while in veto mode.

Activate veto mode.

LAV IV

read,grpz —==
OK ? ok —==

Initiate execution of commands in GRPZ.
Execute preceding command. -

First command in GRPZ.

*CMD =~ (IF(X.GT.Y))=

OK ? Ok —=
*CMD ~ (X=X~1.0) -

Execute preceding command.
Second command in GRPZ,

OK ? x=x+1.0 —-

Replace preceding command with this command.

*CMD -~ (GO) —=

OK ? ok ==

Third command in GRPZ.

Execute preceding command.

? set,veto,o0ff =
OK ? Ok =

Turn off veto mode.

? print¥*,x,y
2. 2.
?

Execute preceding command.

Figure 5-15. Debug Session Illustrating Veto Mode

DISPLAYING COMMAND SEQUENCES
AS THEY EXECUTE

Normally, CID does not display the commands in a trap or
breakpoint body or group as they are executed. In some
cases, however, you might want to examine the commands
in the sequence as they are executed. You can cause the
commands in a sequence to be displayed whenever the
sequence is invoked by issuing a SET,OUTPUT command
and specifying the R or B options. The B option causes
CID to display each command in a trap or breakpoint body
immediately before the command is executed; the
R option causes CID to display each command in a group
or file immediately before the command is executed. You
should remember to specify the default output types on
the SET,OUTPUT command so that they are not
suppressed. For example, the command:

SET,0UTPUT,E,W,L,D,R,B

displays each command of a command sequence whenever
the sequence is executed, as well as the normal output
(See section 4, Control of CID Output).

INTERRUPTS DURING SEQUENCE
EXECUTION

You can obtain control at any time during a debug session
by issuing a terminal interrupt. This is accomplished by
keying a %A under NOS/BE, a BREAK under NOS, or
a) under NOS IAF,

If your program is executing when you issue a terminal
interrupt, an interrupt trap occurs as described in
section 4. If a command sequence is executing at the
time of the interrupt, execution of the sequence is
suspended and CID issues the message:

INTERRUPTED
?

5-20

You can respond as follows:

Debug Action

Resume execution at
the point of the
interrupt.

User Response
OK or YES

GO or NO,SEQ Disregard all remaining
.commands in the sequence
and resume execution of
the user program.

Any CID command Execute the specified
command and resume execution
of the sequence at the point

of the interrupt.

If CID is in the process of displaying information when the
interrupt is issued, the information remaining to be
printed is lost. A terminal interrupt is therefore an
effective means of stopping excessive CID output.

EXAMPLES OF DEBUG SESSIONS
USING COMMAND SEQUENCES

Following are two examples of debug sessions that use
command sequences. The programs CORR and NEWT,
debugged in section 3, are used to illustrate how
sequences can be used to speed up the debugging process.

PROGRAM CORR

The original version of CORR, with errors, is shown in
figure 3-16. Several debug sessions were required to
debug the program completely. Commands issued during
one session had to be reentered in subsequent sessions.

60482700 A

This example demonstrates how this repetition can be
eliminated by including the assignment commands in trap
and breakpoint bodies and saving the trap and breakpoint
definitions on a separate file for use in later sessions. The
example also demonstrates how an appropriate command
sequence can be used to simulate the reading of input data.

The NOS/BE text editor is used to create the three
command files shown in figure 5-16. Each file
corresponds to a test case. The files contain assignment
commands that insert the correct values for SUMYSQ and
N and test values in the arrays X and Y. Two commands,
separated by a semicolon, are included on each line. The
files are named TEST1, TEST2, and TEST3, respectively.

Listing of TEST1:

SUMYSQ=0.9;N=5
X{1)=10.0;Y(1)=10.1
X(2)=208.5;Y(2)=21.1
X(3)=6.8;Y(3)=6.1
X(4)=34.9;Y(4)=32.9
X{5)=4.4;Y(5)=4.5

Listing of TEST2:

SUMYSQ=8 .8 ;N=5
X(1)=1.8;¥(1)=2.8
X(2)=5.8;Y(2)=5.0
X(3)=10.8;Y(3)=10.9
X(4)=2.8;Y(4)=2.9
X(5)=7.8;Y(5)=7.8

Listing of TEST3:

SUMYSQ=0.0;N=4
X(1)=2.8;Y(1)=1.0
X(2)=2.0:;Y(2)=5.1
X(3)=2.0;¥(3)=7.6
X(4)=2.0;Y(4)=10.0
X(5)=0.0;Y(5)=0.0

Figure 5-16. Command Files Initializing Input Variables
for Program CORR

Another file named BPFILE, shown in figure 5-17, is
created using the text editor. This file contains two
breakpoint definitions. The first breakpoint is set at
line 14. The PAUSE command will temporarily suspend
execution of the breakpoint body. The user will then issue
a READ command to execute the commands in TESTI.

The command GO,L.22 will resume program execution at
line 22, skipping the FORTRAN READ statement. The
second breakpoint is set at line 32. The body of this
breakpoint contains assignment commands that will
calculate and insert the correct values for SUMXY and
RSQ when the bady is executed.

The debug sessions for program CORR are shown in
figure 5-18. One session is conducted for each test case.
At the beginning of each session the command
READ,BPFILE . is issued to establish the breakpoint
definitions and program execution is initiated. When the
PAUSE command gives interactive control to the user, a
READ command is issued to load the arrays X and Y.
Execution is resumed by the GO command, and the
commands in the sequences are executed automatically.
A LIST,BREAKPOINT is issued in the first session to

display existing breakpoints and bodies.

PROGRAM NEWT

The command sequence capability can be applied to the
debugging of the Newton's method subroutine shown in
figure 3-25. Two of the errors in the original program
involved an incorrect function name in the subroutine call
and an incorrect convergence check that resulted in an
infinite loop. The CID commands to correct these errars
can be placed in a breakpoint body, as shown in
figure 5-19. The sequence includes commands to
calculate the correct functional value FX, print the
functional value and current number of iterations, test for
convergence, and resume program execution at a location
following the erroneous statements. If the convergence
criterion is satisfied, the PAUSE command will suspend
execution of the sequence. The breakpoint, set at
line 400, is encountered on each pass through the loop.
Note that although line 400 is illegal because of the
unresolved function reference, program execution will be
suspended before the statement is executed. The
subsequent GO command will resume execution at
line 420, bypassing the illegal statement.

After the breakpoint is defined, program execution is
initiated with the GO command. The commands in the
breakpoint body are executed automatically, as indicated

by the PRINT command output, until the convergence

criterion is satisfied. In response to the first occurrence
of the PAUSE command, GO is entered to resume program
execution. In response to the next occurrence of PAUSE,
the command EXECUTE(P.MAINL.150) is entered to
transfer control to line 150 of the main program, allowing
the program to print the results and to terminate.

SET,BREAKPOINT,L.14 [
PAUSE, "INPUT?2"

Set breakpoint with bodyat line 14; when PAUSE

PRINT*,"X=",X," ¥Y=",Y
GO,L.22 '

SET,BREAKPOINT,L.33 [
SUMXY=X(1) *Y (1) +X(2) *Y(2)
SUMXY=SUMXY+X(3) *Y(3) +X(4) *Y(4)
SUMXY=SUMXY+X(5) *Y(5)

SUMX= (N* SUMXY~SUMX* SUMY) * (N*SUMXY~SUMX* SUMY)

IF (DENOM.EQ.#) PAUSE, "DENOM IS 0"
RSQ=SUMX/DENOM
]

. is executed, user can issue command to read -
command file,

Set breakpoint with body at line 32; commands are
included to calculate correct values for SUMXY and
RSQ and to test DENOM for zero value.

Figure 5-17. Listing of File BPFILE Containing Breakpoint Definitions

60482700 A

5-21

Debug Session for First Test Case:

CYBER INTERACTIVE DEBUG

?list,breakpoint = List breakpoint locations.

*B #1 = L.1l4 , *B #2 = L.33
?list,breakpoint,#1,#2 = - List breakpoint bodies.

*B $1 = L.14
SET,BREAKPOINT,L.14 [
PAUSE, " INPUT?" - Breakpoint #1.
PRINT*, "X=",X," Y=",Y ’)

GO,L.22

]

*B $2 = L.33
SET,BREAKPOINT,L.33 |
SUMXY=X (1) *¥Y(1)+X(2) *Y(2)
SUMXY=SUMXY+X(3) *Y(3) +X(4) *Y(4)
SUMXY=SUMXY+X(5) *Y(5)
SUMX-(N*SUMXY~SUMX*SUMY)*(N*SUMXY—SUMX*SUMY) Breakpoint #2.
IF (DENOM.EQ.#9)
PAUSE, "DENOM IS @"
RSQ=SUMX/DENOM

]

X=10. 20.5 6. 34. 4.4 Y=10.1 21.1 6.1 32.9 4.5
“CORRELATION COEFFICIENT IS 1.00
*T $17, END IN L.36

sSTOP
1.347 CP SECONDS EXECUTION TIME
quit

DEBUG TERMINATED

Debug Session for Second Test Case:
CYBER INTERACTIVE DEBUG

?go

*B #1, AT L.1l4
INPUT?
?read,test? - Initiate execution of commands in TEST2.

?go

X=1. 5. 16. 2. 7. Y¥=2. 5. 16. 2. 7.
CORRELATION COEFFICIENT IS .99

*T #17, END IN L.36
?

STOP
1.215 CP SECONDS EXECUTION TIME
quit

DEBUG TERMINATED

?read,bpfile = Establish breakpoint definitions stored in BPFILE.

290

*B #1, AT L.14 - Breakpoint detected at line 14; sequence execution initiated.
INPUT? - PAUSE command suspends sequence execution.
?read,testl = Initiate execution of commands in TEST1.

290 = - Resume sequence execution.

?read,bpfile = Establish breakpoint definitions stored in BPFILE.

Figure 5-18. Debug Session Using Command Sequence for Debugging Program CORR (Sheet 1 of 2)

5-22

60482700 A

Debug Session for Third Test Case:

CYBER INTERACTIVE DEBUG
?read,bpfile - Establish breakpoint definitions stored in BPFILE.

?go

*B #1, AT L.14
INPUT?
?read,test3 = Initiate execution of commands in TEST3.

?go

X=2. 2. 2. 2. 6. Y¥Y=1. 5.1 7.6 16. 0.
*B #2, AT L.33

DENOM IS @

?2quit

DEBUG TERMINATED

Figure 5-18. Debug Session Using Command Sequence for Debugging Program CORR (Sheet 2 of 2)

CYBER INTERACTIVE DEBUG
? set,breakpoint,p.newt_1.480 [

IN COLLECT MODE Set breakpoint with body at line 400.
? fx=3.0%x~(x+1.0)/(x~1.0) Include commands to calculate FX,
? print*,"iteration “,its," fx=",fx -=— test for convergence, test number of
? if(fx.le..@#P01)pause,"execution suspended,check fx" iterations, and resume execution at
? if(its.ge.1#0@)pause,"too many iterations” line 420.

? go,1.420
?

END COLLECT

? go
ITERATION 8 FX=1.
ITERATION 1 FX=6.66666666666664E~02
ITERATION 2 FX=1.90323328339409E~02
ITERATION 3 FX=5.67192595682897E~03 Initiate execution. The breakpoint
ITERATION 4 FX=1.71638291327363E~03 body is executed on each pass
ITERATION 5 FX=5.17567172241939E~04)~ through the loop, until the IF test
ITERATION 6 FX=1.56781257640404E~04 is satisfied and the PAUSE command
ITERATION 7 FX=4.75071336367705E~05 suspends execution of the sequence.

*B #1, AT P.NEWT L.400

EXECUTION SUSPENDED,CHECK FX
? go

ITERATION 8 FX=1.43967704246961E~85
*B #1, AT P.NEWT_L.400

EXECUTION SUSPENDED,CHECK FX
? execute,p.main_1.150 —= Resume execution of main program.
CONVERGENCE IN ***%* TTERATIONS. X= .

*T $17, END IN P.MAIN_L.174
? quit

SRU 22.400 UNTS.

RUN COMPLETE.

Figure 5-19. Debug Session Using Command Sequence for Debugging Subroutine NEWT

60482700 A

5-23

DEBUGGING IN AN OVERLAY ENVIRONMENT | 6

Programs containing overlays can be executed under CID
control using all the techniques presented thus far in this
manual. In addition, CID provides the following features
to facilitate debugging of overlays:

® Address qualification by overlay which allows you to
reference locations in different overlays

e An OVERLAY trap that suspends program execution
when an overlay is loaded

® Special command forms that limit the command
scope to specified overlays

An important fact to remember when debugging programs
containing overlays is that while all CID commands are
valid for overlays currently in memory, only certain
commands can reference locations in overlays that are not
loaded.

SUMMARY OF OVERLAY PROCESSING

Overlaying allows you to divide a program into sections
called overlays to reduce the amount of memory required
for execution. Different overlays can occupy the same
storage locations at different times. Thus, when an
overlay residing in memory is not currently required by
the program, it can be replaced by another overlay.

There are three levels of overlays: a zero level, a primary
level, and a secondary level. The zero level, which is
sometimes referred to as the main overlay, is resident in
memory throughout program execution. The primary level
is called from the zero level and is loaded immediately
above the zero level. The secondary level is called from
its associated primary level or from the zero level and is
loaded immediately above the primary level.

A primary level overlay can have any number of secondary
level overlays associated with it. When a primary overlay
is called from the zero level overlay, it replaces the
primary overlay currently residing in memory. When a
secondary level overlay is called from a zero level or
primary level it replaces the secondary overlay currently
residing in memory. Thus, only the zero level, one
primary level, and one secondary level can reside in
memory concurrently.

Overlays are identified by a pair of integers as follows:

(0,0 Zero or main overlay
(n,0) Primary overlay
(n,k) Secondary overlay

where n is the primary level number and k is the
secondary level number. For example, (1,0) and (2,0) are
primary overlays; (2,1), (2,2), and (2,3) are secondary
overlays associated with primary overlay (2,0). i

A group of program units to be loaded into an overlay
must be preceded by an OVERLAY directive of the form:

OVERLAY(Ifn,i,j)

60482700 A

where Ifn is the name of the file on which the overlay is
to be written, and i and j are level numbers. The
OVERLAY directive must begin in column7.

Overlays are called from within a FORTRAN program by
the statement:

CALL OVERLAY(lfn,i,j)

where 1fn is the name of the file in H format on which the

-overlay is written, and i and j are level numbers.

An example of a program containing overlays is illustrated
in figure 6-1. This program contains a main overlay (0,0),
two primary level overlays (1,0) and (2,0), and a secondary
overlay (1,1) associated with overlay (1,0). The overlays
are stored on a file named OVLF, as established by the
OVERLAY directives. Each overlay contains a program
unit that performs a simple computation. The variables
X, Y, and Z are declared in common and are therefore
global to the program. The variable RESULT is
referenced in three program units and is local to each.
The program units in both primary overlays have the
same name.

OVERLAY (OVLF, 6 ,9)
PROGRAM SETXYZ

COMMON /ACOM/X,Y,%
X=1.9

Y=2.0

2=3.0

CALL OVERLAY (4HOVLF,1,6)
CALL OVERLAY (4HOVLF,2,0)
STOP

END

OVERLAY (OVLF,1,0)

PROGRAM COMP-

COMMON /ACOM/X,Y,Z
RESULT=-3.0*X~2.0*Y+2.0%2
CALL OVERLAY (4HOVLF,1,1)
RETURN

END

OVERLAY (OVLF,1,1)
PROGRAM COMP2

COMMON /ACOM/X,Y,%
RESULT=5.0%X~6.0*Y+4.0%%
RETURN

END

OVERLAY (OVLF,2,8)
PROGRAM COMP

COMMON /ACOM/X.,Y,%
RESULT=4.0*X+2 .0*Y~2%
RETURN

END

Figure 6-1. Sample Program Illustrating Overlays

6-1

The program calculates a value for the variable RESULT
in each overlay. Each calculation is local to the overlay
in which it resides. The (0,0) overlay is loaded first and
remains in memory throughout execution. This overlay
sets values for X, Y, and Z and then calls the (1,0)
overlay. The (1,0) overlay calculates RESULT, then calls
the (1,1) overlay which calculates its local RESULT. At
‘this point, the three overlay levels reside in memory
concurrently. When execution of the (1,1) overlay has
completed, control returns to the main overlay which then
calls the second primary overlay (2,0). Overlay (2,0)
replaces overlays (1,0) and (1,1) in memory.

Refer to the Loader reference manual or to the
FORTRAN Extended reference manual for more
information on overlays.

ADDRESS QUALIFICATION

The address forms presented in tables2-1 and 2-2 are
valid when applied to programs containing overlays.
However, when referencing an address in a program unit
having the same name as a program unit in another
overlay, you must specify the overlay. This s
accomplished by prefixing the address specification with
an overlay qualifier, as in the following examples:

SET, TRAP,RJ,(2,0)P.MTADD
Set an RJ trap in program unit MTADD residing
in overlay (2,0).

SET,BREAKPOINT,(2,1)P.MTADD L.5
Set a breakpoint at line5 of program unit
MTADD residing in overlay (2,1).

DISPLAY;,(0,0)P.SUB1 X
Display the contents of X in program unit SUB1
residing in the zero level overlay.

The following restrictions apply to the use of overlay
qualification notation:

e It is necessary to use overlay qualification only when
duplicate program unit names exist.

e Overlay qualification cannot be used with the PRINT,
IF, and assignment commands.

e If the overlay designation is omitted from an address
specification and duplicate program unit names exist,
the name of the program unit currently in memory is
selected. If none is in memory, the program unit
name residing in the overlay having the lowest
primary level number is selected.

Overlay qualification notation is also used in CID output
messages to denote a particular overlay, as in the trap
message:

*T #17, END IN(0,0)P.SETXY _L.9

An END trap has occurred at line9 of program SETXY in
overlay (0,0).

REFERENCING ADDRESSES IN
UNLOADED OVERLAYS

The three basic functions of CID, discussed in section3,
have the following restrictions when applied to unloaded
overlays:

e Suspending program execution. You can set traps and

breakpoints in any overlay, even if it has not been
loaded. These traps and breakpoints will be
recognized when the containing overlay is loaded and
its programs are executed. Program execution
cannot be resumed at a location in an unloaded
overlay.

e Displaying the contents of program locations. You
cannot display the contents of locations within
overlays that are not currently loaded. The
LIST,VALUES command lists only those variables
declared in loaded overlays. LIST,VALUES displays
variables in alphabetical order, grouped as to the
program unit in which they are defined. Each
program unit name is prefixed by an (i,j) overlay
qualifier.

e Altering the contents of program locations. You

cannot alter the contents of locations within overlays
that are not currently loaded.

The following commands can reference addresses in
unloaded overlays:

SET,TRAP
SET,BREAKPOINT
SET,HOME

LIST, TRAP
LIST,BREAKPOINT
LIST,MAP
CLEAR,TRAP
CLEAR,BREAKPOINT
SAVE,TRAP
SAVE,BREAKPOINT

If you illegally reference an address in an unloaded
overlay, CID issues the error message:

*ERROR - ADDRESS IN UNLOADED OVERLAY

OVERLAY TRAP

The OVERLAY trap suspends program execution and gives
control to CID whenever specified overlays are loaded
into memory. This allows you to examine and alter the
status of a program as it exists at the time the overlay is
loaded. The trap occurs after the overlay is loaded but
before control transfers to the loaded overlay. The forms
of the command to set an overlay trap are:

SET, TRAP,OVERLAY,*
CID gets control when any overlay is loaded.

SET,TRAP,OVERLAY,(i,j)
CID gets control when overlay (i,j) is loaded.
When an overlay trap occurs, CID issues the message:

T #n, OVERLAY (i,j) IN (i,j)P.name L.0

n Trap number assigned by CID
i,j Level numbers of the current overlay
name Name of the program unit in the

current overlay to be executed first

60482700 A

SPECIAL FORMS OF SOME
DEBUG COMMANDS

The commands to LIST, CLEAR, and SAVE traps and
breakpoints, and the LIST,MAP command have special
forms intended for use with overlay programs. These
forms, listed in table 6-1, allow you to specify an overlay
or list of overlays for the scope parameter.

The LIST,MAP command is especially useful when used
with overlay programs. This command lists all program
modules grouped according to overlay. Overlays are
identified by an (i,j) designation. Overlays currently in
memory are indicated by an asterisk.

OVERLAY EXAMPLE

A debug session for the program in figure 6-1 is illustrated
in figure6-2. The purpose of this session is to suspend
program execution after each overlay is loaded and to
issue various commands to examine the status of the
program. Control statements are included to activate
debug mode and compile, load, and execute the program.
CID must be on at compile time and at the time the load
sequence is issued.

The following CID commands are issued during this session:

LIST,MAP
List the level numbers of all overlays in the
program. Overlays currently in memory are
indicated by an asterisk.

LIST,MAP,(2,0)
List program modules contained in the (2,0)
overlay.

SET,TRAP,OVERLAY,*

Set an overlay trap that suspends execution when
any overlay is loaded.

TRACEBACK
Display a program traceback list starting at the
home program.

DISPLAY,#HOME -
Display the name of the home program and the
overlay in which it resides.

SET,HOME(1,0)P.COMP
Designate COMP in overlay (1,0) as the home
program. Note that the (1,0) overlay is not in
memory when this command is issued. Variables
declared in COMP cannot be referenced, as
illustrated by the next command.

PRINT*,RESULT
Attempt to print the value of RESULT. The
attempt fails since the overlay containing the
current home program is not in memory.

TABLE 6-1. SPECIAL FORMS OF CID COMMANDS FOR OVERLAY PROGRAMS

Command I

Description

|

LIST,TRAP,type, (i, j),(iyj),y...

LIST,MAP, (i,3),(i,j)y...

LIST,BREAKPOINT, (i,3),(i,j)y...
CLEAR, TRAP, type, (i,3),(iyj)ye..

CLEAR, BREAKPOINT, (i,3),(i,j) ...
SAVE, BREAKPOINT, 1fn,(i,3i),(iyj)s...

SAVE,TRAP,1fn, type, (i,3),(i,j)ye-.

Lists addresses of traps in the specified overlays; * can
be substituted for type, in which case all types are listed.

Lists program modules contained in the specified overlays.

Lists addresses of all breakpoints in the specified
overlays.

Clears all traps of the specified type in the specified
overlays.

Clears all breakpoints in the specified overlays.
Copies the breakpoints in the specified overlays to 1lfn.
Copies the traps of the specified type in the specified

overlays to 1lfn; * can be substituted for type, in which
case all types are copied.

60482700 A

6-3

. .debug
..ftn,i=ovprog,ts,db
410600B CM STORAGE USED
.173 CP SECONDS COMPILATION TIME
..Xxeqg

OPTION=load=1go

OPTION=nogo
..ov1lf

CYBER INTERACTIVE DEBUG
?list,map

(0'0) * ’ (l_')’ (1'1)’
?set,trap,overlay,* -

(2'0)4———

?go -

*T $1, OVERLAY (1,0) 1IN (l,ﬂ)P.COMP_L.ﬂ<———
?list,map

(010) * 14 (2,@)4———

?go

(1,0) * , (1,1),

*T #1, OVERLAY (1,1) IN (1,1)P.COMP2 L.§ ~a——
?list,map

(0,80 * , (1,8) * ,
?display,#home

(1,1) *,

(2,0) -—-

#HOME = (1,1) P.COMP2 —=
?list,values

(0,06) P.SETXYZ
X =1.0, Y =
(1,0) P.COMP

RESULT = ~1.0, X =
(1,1) P.COMP2
RESULT = -I,
?traceback =

2.0, z = 3.0
1.9, Y = 2.0, Z =

X =1.0, Y = 2.9, Z =

P.COMP2 CALLED FROM P. COMP_L .6
P.COMP CALLED FROM P.SETXYZ L. 7
?

2go

*T $1, OVERLAY (2,0) IN (2,8)P.COMP_L.§ w——
?list,map

(9,08) * , (1,9), (1,1)., (2,0) * -—-—ee

2go

*T $17, END IN (8,0)P.SETXYZ L.9 —=
?

STOP
1.522 CP SECONDS EXECUTION TIME
list,map
(6,0) * , (1,9), (1,1), (2,9) * —-——u—
?list,values s
(8,08) P.SETXYZ
X =1.0, Y = 2.9, Z = 3.9
(2,0) Pp.COMP
RESULT = 5.0, X =1.0, Y = 2.0, Z = 3.0

Load sequence.

Overlay (0,0) is currently in memory.
Set OVERLAY trap; scope is entire program.

OVERLAY trap occurs when overlay (1,0) is loaded.
Overlays (0,0) and (1,0) are currently in memory.
OVERLAY trap occurs when overlay (1,1) is loaded.
Overlays (0,0), (1,0) and (1,1) are currently in

memory.

Program COMP2 in overlay (1,1) is the current
home program.

List all variables and values in programs currently
in memory.

Initiate traceback from current home program.

OVERLAY trap occurs when overlay (2,0) is loaded.

Overlays (0,0) and (2,0) are currently in memory.

Program terminates at line 9 of program SETXYZ
in overlay (0,0).

Overlays (0,0) and (2,0) are currently in memory.
List all variables and values in programs currently
in memory.

Figure 6-2. Debug Session Illustrating Overlay Debugging (NOS/BE) (Sheet 1 of 2)

6-4

60482700 A

?print¥*,result

?set,home, (1,0)p.comp = Designate program COMP in overlay (1,0) as

home program.
?print*,result

*ERROR ~ ADDRESS IN UNLOADED OVERLAY —s———————— Current home program is in an unloaded overlay.
?set ,home, (2,0) p.COMP = Designate program COMP in overlay (2,0) as
home program.

?print*,result

5.
?2quit

DEBUG TERMINATED

*ERROR ~ NO PROGRAM VARIABLE RESULT ~e———————— RESULT is not defined in current home program.

Figure 6-2. Debug Session Illustrating Overlay Debugging (NOS/BE) (Sheet 2 of 2) |

60482700 A

6-5

STANDARD CHARACTER SETS A

W

Control Data operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

The set in use at a particular installation is specified when
the operating system is installed.

Depending on another installation option, the system

assumes an input deck has been punched either in 026 or in
029 maode (regardless of the character set in use). Under
NOS/BE, the alternate mode can be specified by a 26

60482700 A

or 29 punched in columns 79 and 80 of the job statement
or any 7/8/9 card. The specified mode remains in effect
throughout the job unless it is reset by specification of the
alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of any 6/7/9 card, as
described above for a 7/8/9 card. In -addition, 026 mode
can be specified by a card with 5/7/9 multipunched in
column 1; 029 mode can be specified by a card with 5/7/9

‘multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable
to ASCII-CRT and ASCII-TTY terminals.

A-1

cbDC ASCH
Display Hollerith External .
Code Graphic Punch BCD Craphic fooo, (ggg‘:)
{octal) {026) Code
oot : (colon) Tt 82 00 : (colon) T 82 072
01 A 121 61 A o121 101
02 B 122 62 B 12-2 102
03 C 123 63 Cc 12-3 103
04 D 124 64 D 124 104
05 E 125 65 E 125 108
06 F 126 66 F 126 106
07 G 12-7 67 G 127 107
10 H 128 70 H 128 110
11 i 129 71 i 129 111
12 J 111 41 J 1-1 112
13 K 112 42 K 11-2 113
14 L 13 43 L 113 114
15 M 114 44 M 114 115
16 N 115 45 N 15 116
17 0 11-6 46 (o} 16 117
20 P 117 47 P 11-7 120
21 Q 118 50 Q 118 121
22 R 119 51 R 119 122
23 S 02 22 S 02 123
24 T 0-3 23 T 03 124
25 U 0-4 24 U 04 125
26 \ 05 25 v 05 126
27 w 06 26 w 0-6 127
30 X 07 27 X 07 130
31 Y 08 30 Y 08 131
32 z 09 31 r4 09 132
33 0 (4] 12 (V] 0 060
34 1 1 01 1 1 061
35 2 2 s 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 1 9 9 071
45 + 12 60 + 1286 053
46 ; 11 40 . 11 055
47 11-8-4 54 11-84 052
50 / 01 21 / 01 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 118-3 53 $ 1183 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , (comma) 083 33 , (comma) 083 054
57 . (period) 128-3 73 . (period) 1283 056
60 = 086 36 # 8-3 043
61 [87 17 L 1282 133
62] 0-8-2 32) 1182 135
63 % Tt 86 16 % 1t 084 045
64 = 8-4 14 " {quote) 8-7 042
65 r~ 085 35 _ (underline) 0-8-5 137
66 v 110 or 11-8:2111 52 ! 1287 or 110" 1 041
67 A 0-8-7 37 & 12 046
70 t 1185 55 ' (apostrophe) 85 047
7 } 11-8-6 56 ? 08-7 077
72 < 12:0 or 1282111 72 < 12.84 or 120" 11 074
73 > 1187 57 > 08-6 076
74 < 85 15 @ 84 100
75 2 1285 75 . \ 082 134
76 - 12-8-6 76 — (circumfiex) 1187 136
77 ; (semicolon) 1287 77 ; {semicolon) 11-8-6 073
TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
two colons.
™)n installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (55gq).
TThe alternate Hol?erith (026) and ASCI! (029) punches are accepted for input only.

60482700 A

CDC CHARACTER SET
COLLATING SEQUENCE

Collating Collating
Sequence cDC Display | External Sequence CcbC Display | External
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
— ——— ———— —— —
00 00 blank 55 20 32 40 H 10 70
01 01 S 74 15 33 a1 | 1 71
02 02 % 637 16+ 34 42 v 66 52
03 03 { 61 17 35 43 J 12 41
04 04 — 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 ! 70 55 39 47 N 16 45
08 10 i 71 56 40 50 0 17 46
09 1 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
11 13 - 76 76 43 53 R 22 51
12 14 . 57 73 44 54 i 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47 57 U 25 24
16 20 $ 53 53 48 60 A 26 25
17 21 * 47 54 49 61 w 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 Z 32 31
21 25 (51 34 53 65 : oot nonet
22 26 = 54 13 54 66 0 33 12
23 27 * 64 14 55 7 1 34 01
24 30 < 72 72 56 70 2 356 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11

Tln installations using the 63-graphic set, the % graphic does not exist. The :

code 63, External BCD code 16.

graphic is display

60482700 A

GLOSSARY B

Abort -
To terminate a program or job when an error
condition (hardware or software) exists from which
the program or computer cannot recover.

Auxiliary File -
An optional file, established by the SET,AUXILIARY
command, to which CID output is written. The
output types. written to this file are specified by
special output codes.

Batch Mode -
A mode of CID execution which allows programs
intended for batch execution to be executed under
CID control.

Breakpoint -
A designated location in a program where execution
is to be suspended.

Collect Mode -
A mode of CID execution in which commands entered
by the user are not executed, but are included in a
group, trap, or breakpoint bodys; initiated by a at the
end of a SET, TRAP; SET,GROUP; or
SET,BREAKPOINT command and terminated by a .

Common Block -
A module intended solely for storing data. A block of
data can be declared in common to both the calling
routine and the called routine as an alternative to
passing data to routines via parameter values.

Debug Mode -
A mode of execution in which special CID tables are
generated during compilation and in which user
programs are - executed under CID control; initiated
by a DEBUG(ON) control statement and terminated
by a DEBUG(OFF) contro! statement.

Debug Session -
A sequence of interactions between the user and CID,
beginning when execution of the user program is
initiated in debug mode and ending when a QUIT
command is issued.

Entry Point -
A special named location within a program module.
This location is, by convention, the target of the RJ
(Return Jump) instruction that transfers control to
the module. The RJ instruction stores the return
address at the entry point location and starts
execution at the next location.

Extended Core Storage (ECS) -
An _additional memory available as an option on
CYBER computer systems. This memory can only be
used for program and data storage, not for program
execution. Special hardware instructions exist for
transferring data between central memory and ECS.

Group -
A sequence of CID commands established and
assigned a name by a SET,GROUP command and
executed when a READ command is issued.

60482700 A

Home Program -

Program unit in which variables, line numbers, and
statement - labels referenced by the wuser in CID
commands are assumed to be located unless
appropriate qualifiers appear. By default, the home
program is the program unit being executed at the
time CID gains control. The user can change the
default with the SET,HOME command.

Interactive -
Capable of a two-way back and forth exchange of
information.

Interactive Mode -
The norma! mode of CID execution. The user enters
commands directly from the terminal and CID
immediately executes the commands. CID can also
execute in batch mode.

Interpret Mode -

A mode of execution in which a special routine called
an interpreter examines each machine instruction to
be executed in the user program, and simulates its
execution by the execution of several of its own
instructions. Execution in interpret mode
consequently takes 20 to 50 times as long as direct
execution.

Interrupt (verb) -
To stop a running program in such a way that it can
be resumed at a later time.

Interrupt (noun) - '
A special control signal which, when issued, causes
action as described for INTERRUPT (verb).

Module -
A named section of coding output by a compiler or
assembler, or a block of data (common block). The
components of system libraries are also modules.
Prior to loading, modules are called object modules;
after loading they are called load modules.

Optimizing Mode -
One of the compilation modes of the FORTRAN
Extended compiler, indicated by the control
statement options OPT=0, 1, 2, or by omission of the
TS option. Programs compiled in optimizing mode
cannot use many of the CID features described in this
manual.

Overlay -

A portion of a program, consisting of one or more
modules, which can share an allocated area of
memory with other portions of the program. When
access to a.particular module is required, the overlay
containing that module is loaded, thus overlaying the
previous contents of the memory area allocated for
that overlay. Such a scheme allows large programs to
execute in a limited amount of memory.

Program -
The completely loaded set of one or more object
modules. A program that has been loaded in debug
mode can be executed under CID control.

B-1

Program Module -
A module intended for program execution. A
program module always has an entry point, a named
location in the module to be used in calling the
module via the RJ instruction.

Program Unit -
A FORTRAN main program, function subprogram,
subroutine, or block data subprogram.

Time-Sharing Mode -
One of the compilation modes of the FORTRAN
Extended compiler, indicated by the TS control
statement option; required for full use of features
described in this manual.

B-2

Trap (verb) -
To suspend program execution and transfer control to
CID upon the detection of some specified condition.

Trap (noun) -
A mechanism that detects the occurrence of a
specified condition, suspends execution of the user
program at that point, and transfers control to CID.

Veto Mode -

A mode of CID execution in which CID displays each
command of a command sequence immediately prior
to its execution and gives control to the user. The
user can allow the command to be executed, skipped,
or replaced by another command. Veto mode is
activated by the SET,VETO,ON command and
terminated by the SET,VETO,OFF or CLEAR,VETO
command.

60482700 A

ARITHMETIC ERRORS C

S ——

The following paragraphs discuss some of the errors that
can cause a FORTRAN program to terminate
prematurely. To use CID effectively, you should be able
to recognize situations that can cause these errors. A
knowledge of the internal representation of numbers can
be helpful in understanding why arithmetic errors occur.

FLOATING POINT REPRESENTATION

The internal floating point format is shown in figure C-1.
Bits 0 through 47 contain the coefficient of the number,
equivalent to about 14 decimal digits. The binary point is
assumed to be at the right of bit 0. The sign of the
coefficient is represented by bit 59, 0 for a positive value
and 1 for a negative value. The exponent is contained in
bits 48 through 58 and is biased by 2000 octal, that is,
2000 octal is added to the exponent. Some examples of
internal floating point representation, including the
largest and smallest permissible values, are illustrated in
table C-1. Operands exceeding the maximum or minimum
values cause execution errors.

ARITHMETIC MODE ERRORS

Arithmetic mode errors occur when the central processor
encounters an instruction that cannot be executed. Such
an instruction generally involves an operand that contains
invalid data or an address beyond the user's field length.
The arithmetic mode errors and some possible causes are
listed in table C-2.

TABLE C-1. EXAMPLES OF FLOATING POINT NUMBERS

l Number I Internal Representation l

When a mode error occurs, the executing program is
aborted and a message of the following format is issued:

time ERROR MODE=n ADDRESS=xxxxxx

where n is the mode number and xxxxxx is the relative
octal address where the error occurred.

When a mode error occurs while executing in debug mode,

-control passes to CID. This is due to the ABORT trap

explained in section 3. On receiving control, CID issues
the following message and prompt:

*T#18 ABORT CPU ERROR EXIT nIN L.m
?

where n is the mode number and m is the source line
number where the error occurred. You can then enter
CID commands to examine the status of the program as it
exists at the time of termination.

OVERFLOW, UNDERFLOW, DIVISION
BY ZERO '

Floating point overflow occurs when a value is generated
which exceeds the allowable exponent range. This
situation can occur when performing calculations with
numbers of extremely large magnitude or when a nonzero
number is divided by zero.

When overflow occurs, the exponent is set to 37777g (the
largest possible exponent) and the characteristic is set to
zero. Such an operand is called an infinite operand. The
executing program aborts when the infinite operand is
used in a subsequent computation, not when it is
generated. A debug session for a program that generates
an infinite operand is illustrated in figure C-2. A division
by zero generates the infinite operand. Program

+1. 1720 4000 0000 0000 0000 execution terminates when the infinite operand is
- referenced in the statement D=C+1.0. The LIST,VALUES
+100. 1726 6200 0000 0000 0000 command shows the program variables as they exist at the
time of termination. The value of the variable C, the
-100. 6051 1577 7777 77717 71777 infinite operand, is represented by the letter R.
1.E64 2245 6047 4037 2237 7733 Floating point underflow occurs when a value is generated
i which would have an exponent less than -294. The
-1.E64 6404 2570 0025 6605 5317 resulting operand is set to all zeros.
0. 0000 0000 0000 0000 0000 The allowable range for floating point numbers is shown in
i table C-3.
59 48 0
1 11 bits 48 bits
sign biased integer coefficient assumed binary point
exponent

Figure C-1. Internal Floating Point Format

60482700 A

TABLE C-2. MODE ERRORS

Error Explanation Possible Causes
Number
F=======::=:::::E:::::::::::::::::: : =1

0 A branch to location zero Machine instructions destroyed by array overflow;
has occurred or an illegal mismatch between number of arguments in CALL and
instruction has been SUBROUTINE statement.
executed.

1 Program has referenced a a. Program attempted to fetch or store data out-
location outside the user's side program field length; probably due to
field length. incorrect subscript.

b. Program attempted to jump to an address out-
side program field length; probably due to
missing function or subroutine or misspelled
function or subroutine name.

c. Program executed a word that did not contain
an instruction; probably due to array overflow.

2 Infinite value used as Nonzero number divided by zero; very large number
operand. divided by very small number; very large number

multiplied by very large number; numbers very near

10322 in absolute value added or subtracted;

large number raised to a large power.

4 Indefinite value used as Undefined value used in a calculation; zero
operand. divided by zero; zero multiplied by an infinite

value; infinite value divided by an infinite value;

infinite values added or subtracted.

3 Combination of 1 and 2.

5 Combination of 1 and 4.

6 Combination of 2 and 4.

7 Combination of 1, 2,
and 4,

Program _Listing:

1 PROGRAM COMPC 74/74 TS ID FTN
PROGRAM COMPC
A=10
B=1.0
C=(A+B)/(A-B)
5 D=C+1.0
STOP
END
Session Log:
1 CYBER INTERACTIVE DEBUG
1]
EXECUTE
*T =18, ABORT CPU ERROR EXIT 02 IN L5
LIST,VALUES
P.COMPC
A=10 B=10, C=R, D=R
QuIT

DEBUG TERMINATED .

Figure C-2. Program COMPC and Debug Session Illustrating Arithmetic Error

c-2 : 60482700 A

TABLE C-3. FLOATING POINT REPRESENTATIONS

Positive Operand

Negative Operand

Floating Point Representation Octal Floating Octal

Largest Value =~ 1.265014083171E+322 37767...7g =~ -1.265014083171E+322 | 40010...0g

Smallest Value = 3,131513062514E-294 000140...0g | = -3.131513062514E-294 | 777637...7g

Zero (underflow 0.0 0...0g -0.0 T...7g

yields zero operand)

Overflow (infinite R 37770...03 | -R 4000...0g

operand))

Indefinite I 17770...0g 1 -1 60007...7g
INDEFINITE OPERANDS An indefinite operand is represented by the character I

Indefinite operands are generated when the central
processor encounters an instruction that cannot be
resolved, such as a division where both the dividend and
the divisor have a value of zero. Indefinite operands can
also be generated when a variable has not been initialized
(the value assigned to uninitialized areas of memory is an
installation parameter). As with infinite operands,
indefinites cause abnormal termination of execution when
they are referenced.

when displayed. The internal representation of an
indefinite operand is shown in table C-3.

ERRORS INVOLVING INTEGERS

The maximum permissible absolute value of an integer
depends on the context in which it is used. When an
integer exceeds the limits of the central processor, it is
assigned a value of zero. The allowable range for integers
is shown in table C-4.

TABLE C-4. INTEGER REPRESENTATIONS

Positive Operand

Negative Operand

Infinite Operand

Indefinite Operand

Integer Octal Integer Octal
Maximum value for 2481 37767...7g -(248-1) 40010...0g
arithmetic operations (5761 7927 7326 7128 31)
Maximum value for sub- 217 0...037777g Negative operand
scripts and DO loop index (131071) not permitted
Zero 0 0...0 -0 7...7g

Set to zero

Set to zero

60482700 A

BATCH MODE DEBUGGING D

CID is primarily intended to be used interactively, but can
be used in batch mode. Possible reasons for using batch
mode include the possibility of a large volume of output or
lack of access to a terminal. In batch mode, however, you
must plan the entire session in advance. This requires
care and can also require a knowledge of what errors are
likely to occur.

To conduct a debug session in batch mode, commands
must exist on a file of card images called DBUGIN from
which CID reads all input. You can create this file using
the system text editor or you can punch the commands on
cards and include them as part of the job deck, copying
file INPUT to DBUGIN. Commands are punched or
written in the same format as in interactive mode; a card
can contain a single command or multiple commands
separated by semicolons.

As in interactive mode, debug mode is established by the
DEBUG control statement. The debug session is initiated
by a statement to load and execute the program. Control
transfers immediately to CID, which begins executing the
commands in DBUGIN. When CID encounters a GO or
EXECUTE in the command stream, control transfers to
the user program. The user program executes until a trap
or breakpoint is encountered. In this manner, control
transfers between the program and CID with no user
intervention.

A QUIT command is normally the last command of the
sequence. However, this command can be omitted and
CID will terminate after the last command has been
executed.

Following are some restrictions that apply to batch mode
debugging:

e Invalid commands are disregarded; when CID
encounters such a command, processing continues
with the next command.

60482700 A

e Commands that would generate a warning message in
interactive mode are executed in batch mode.

e You cannot establish veto mode in a batch session;
CID executes all commands except when execution is
impossible.

All output from CID is written to a file named DBUGOUT
in batch mode. This is a local file and it is the user's
responsibility to print the file or make it permanent. You

~can control the types of output sent to DBUGOUT with

the SET,OUTPUT command. Output can also be sent to a
separate file with the SET,AUXILIARY command.

Batch output from a debug session does not normally show
the user-specified CID commands as they are executed.
CID reads the commands from DBUGIN but does not echo
them to DBUGOUT unless the T option is specified on the
SET,OUTPUT command. Use of this option usually
improves the readability of a batch debug session.

With the exception of the SET,VETO command, all CID
commands are valid in batch mode. You can set traps and
breakpoints, define command sequences, display and alter
the values of program variables, and resume program
execution. The commands in DBUGIN should be specified
in the same order as in interactive mode. CID accesses
DBUGIN for all input that would normally be input from
the terminal.

An example of a program to be debugged in batch mode is
illustrated in figure D-1. Breakpoints are set initially at
lines 2 and 6, and program execution is initiated. When
the first breakpoint is encountered, CID receives control
and executes commands until the next GO is encountered.
The command GO,L.5 skips the FORTRAN statements
that rewind and read an input file and test for
end-of-file. When the breakpoint at line 6 is encountered,
CID executes the LIST,VALUES and QUIT commands. The
contents of the output file DBUGOUT are shown in
figure D-2,

D-1

Deck setup for NOS/BE:

JJB statement

_ COPYBR({INPUT,DBUGIN)
REWIND (DB UGIN)

DEBUG(aN)

FTN.

LGO.

CATALOs (IBUGIUT, ID=MYID,RP=132)
7/8/9 in column 1

SET»BREAKPOINT,LW2 } . When the session is initiated these commands
SETSBREAKPUIINTHL L6 _are executed.

ol - - Transfer control to user program.
X1=2e0571=u.

x; =2, 3’; Yi ={“§ - When the breakpoint at line 2 is encountered
X321e0;Y3e=100 these commands are executed.

Glsles = Transfer control to line 5 of user program.
LISTsVALUESSP «RD } . When the breakpoint at line 6 is encountered
QUIT o these commands are executed.

7/8/9 in column 1
PRIGRAM RO(CINPUT, QUTPUT,TRFILE,TAPEZ2=TRFILE)
REAIND 2
10 REAOD{(2»*) X1»Y1r»X2,Y2,X3,Y3
IF(EQF(2)eNELD) 50 T3 22
CALL AREA(X1sY1r>X25Y25X35Y354)
60 T4 10
2 STap
END
SUIRJUTINE AREA(KXK1»YisX2s¥25X35Y354A)
S1sSQRT({X2=Xx1)*%2 + {(Y2-Y1)%*#%2)
S2=SART((X3=X1)¢%2 + (Y3-v1)*¥2)
333SURT((X3-X2)%%2 + {Y3-Y2)*%2)
T={S1452+453)/2.3
A=SQRTIT*(T-S1)*{T-S2)%(T-S3))
RETURN
END
5/7/8/9 in column 1

[

Deck setup for NOS:

JOB statement
ACC OUNT statement

COPYBR(INPUT 4 DBUGIN)

REWIND(DBUGL V)

DEFINE(DBUSIUT)

0EBUG (ON)

FTN.

LGO.

7/8/9 .in column 1

SET 9BREAKPOINT yLe2 } . When the session is initiated these commands
SET3BREAXKPIINT sl e b are executed.

G0 = Transfer control to user program
X1=0.03Y1=0.0

X2=2.03V2=0.0 = When the breakpoint at line 2 is encountered
X3=103¥3=-140 these commands are executed. }
GOslLe5 - Transfer control to line 5 of user program.
LIST,VALUES,P.RD } . When the breakpoint at line 6 is encountered
QUIT these commands are executed.

77879 . in column 1

Figure D-1. Sample Job Deck for Batch Mode Debugging (Sheet 1 of 2)

60482700 A

PROGRAM RDUINPUT,0UTPUT,y TRFILE,TAPE2=TRFILE)
REAIND 2

13 READI(2,%) X1,Y14X2,Y29X3,Y3
IFLED-{2).NZe(C) GO TO 20
GALL ARZA(XL9Y19X29Y24X39Y35A)
GO0 TJ 1y

20 STJP
END
SUBRIJTINE ARZA(X1,Y1,X2,Y24X3,Y3,A)
S1=SARTL(X2-X1)**2 + (Y2-Y1)¥%2)
S2=SJART((XI=-X1)*¥*%2 + (Y¥Y3~-Y1)¥%¥%2)
S3=SART((X3-X2)*%2 ¢ (VY3-Y2)%*¥%2)
T=(S1+52#53) /7260
ASSQRT(T*(T-S 1) ¥(T-S2)*%(T-53))
RETURN
END

6/7/8/9 in column 1

Figure D-1. Sample Job Deck for Batch Mode Debugging (Sheet 2 of 2)

CYBER INTERACTIVE DEBUG

CYBER INTERACTIVE DEBUG
SET,BREAKPOINT,L.2

SET, BREAKPOINT,L.6

GO

*B $1, AT L.2
X1=0.0;Y1=0.0
X2=2.0;Y2=0.0
X3=1.0;Y3=~1.0

GO,L.5

*B $2, AT L.6
LIST,VALUES,P.RD

P.RD

A = .99999999999999, X1 =90.9, X2 = 2.0, X3 = 1.0,
Y2 = 0.0, Y3 = ~1.0
QUIT

Figure D-2. Contents of File DBUGOUT

60482700 A

SUMMARY OF DEBUG COMMANDS E

X

Table E-1 summarizes the Debug commands and specifies the page in this manual where more detailed information can be
obtained.

TABLE E-1. CID COMMAND SUMMARY

c a Short Described L.
omman Form on Page . Description

Tassigmnent The value of the expression on the right of the equal sign

(var=expr)) replaces the current value of the variable on the left of the
equal sign.

CLEAR, AUXILIARY CAUX Purges the auxiliary output file.

CLEAR, BREAKPOINT CB Removes breakpoints.

CLEAR, GROUP cG Removes command group definitionms.

CLEAR, INTERPRET CcI Turns off interpret mode.

CLEAR, OUTPUT COUT Turns off output to the terminal.

CLEAR, TRAP CT Removes traps.

CLEAR, VETO cv Turns off veto mode.

DISPLAY D . Displays the contents of program locations.

ENTER E Stores values into program locations.

EXECUTE EXEC Resumes execution of the user program.

GO Resumes execution of the user program or of a suspended command
sequence. :

t1r ‘ Provides for conditional execution of CID commands.

JUMP Causes a transfer of control within a command sequence.

LABEL Designates a label to be used as the destination of a JUMP
command.

LIST,BREAKPOINT LB Displays information about breakpoints defined for the current
session.

LIST,GROUP LG Displays information about command groups defined for the
current session.

LIST,MAP M Displays load map informationm.

LIST, STATUS LS] Displays information about the current status of the debug
session.

LIST,TRAP LT Displays information about traps currently defined for the
debug session.

LIST,VALUES Lv Displays names and values of program variables.

MESSAGE Displays a string of characters.

MOVE M Moves data from one location to another.

60482700 A E-1

TABLE E-1. CID COMMAND SUMMARY (Cont'd)

Command Short Described Description
Form on Page

PAUSE Suspends execution of the currently executing command sequence.
TPRINT Displays the contents of program variables.

QUIT Terminates the debug session.

READ Executes a group or file sequence or trap, breakpoint, and
) group definitions saved on a file.

SAVE, BREAKPOINT SAVEB Writes breakpoint definitions to a file.

SAVE, GROUP SAVEG Writes group definitions to a file.

SAVE, TRAP SAVET Writes trap definitions to a file.

SET, AUXILIARY SAUX Establishes an auxiliary output file.

SET, BREAKPOINT SB Establishes breakpoints.

SET, HOME SH Designates a home program.

SET,OUTPUT SOuT Selects output types to be displayed at the terminal.
SET,GROUP SG Defines a command group.

SET, INTERPRET,ON SI ON Turns on interpret mode.

SET, INTERPRET, OFF SI OFF Turns off interpret mode.

SET, TRAP ST Establishes traps.

SET,VETO,ON SV ON Turns on veto mode. .

SET,VETO,OFF SV OFF Turns off veto mode.

SKIPIF Provides for conditional execution of CID commands.
SUSPEND Suspends the debug session.

TRACEBACK Lists a subroutine call sequence. -
tvalid only with FORTRAN programs compiled in debug mode or with the DB option.

E-2

60482700 A

INDEX

e —

ABORT trap 3-5
Address
Qualification 2-5
Range specification 2-6
Specification 2-5, 2-8
Array specification 2-8
Arrays, displaying the contents of - 2-8, 3-14
Assignment command 3-16
Automatic execution of CID commands 5-1
Auxiliary file 4-8

Batch mode CID freatures D-1

Bodies 5-2

Breakpoint
Establishing 3-1
Listing 4-3
Location - 3-1
Message 3-1
Number 3-1
Removing 3-2
Saving 5-13

Breakpoints defined 3-1

CLEAR,AUXILIARY command 4-8
CLEAR,BREAKPOINT command 3-2
CLEAR,GROUP command 5-3
CLEAR,INTERPRET command 3-12
CLEAR,OUTPUT command 4-8
CLEAR,TRAP command 3-11
Collect mode 5-2
Command

Format 2-2

Sequences 5-1

Shorthand notation 2-2, E-1

Summary E-1
Common block specification 2-7
Common blocks, displaying contents of 3-14
Conditional execution of CID commands 3-19, 5-10
Connected files 2-9
CVYBER Interactive Debug (CID)

Command summary E-1

Features 1-1

DB parameter 2-1
DEBUG control statement 2-1
Debug mode 1-1, 2-1
Debug session
Description 1-1
Examples (see Sample debug sessions)
Suspending 5-16
Debug variables 4-1
DEBUG(RESUME) 5-16
Default traps 3-4
DISPLAY command 3-15
Display commands 3-14 - .
Editing a command sequence 5-14
Ellipsis notation 2-8
END trap 3-5
Error processing 4-1, 5-4
EXECUTE command 5-7

FETCH trap 3-6

FORTRAN CID features 1-1
FORTRAN Extended Debugging Facility 1-4

60482700 A

GO command 5-7
Group execution 5-2
Groups
Defined 5-2
Establishing 5-2
Listing 4-4, 5-3
Removing 5-3
Saving 5-13

-HELP command 4-6

Home program 2-4

F command 5-10
Interactive mode 1-1
Interpret mode 3-12
INTERRUPT trap 3-4
Interrupts 3-4, 5-20

JUMP command 5-12
JUMP trap 3-8

LABEL command 5-12

Line number reference 2-5
LINE trap 3-6

LIST commands 4-3
LIST,BREAKPOINT command 4-3
LIST,GROUP command 5-3
LIST,MAP command 4-5
LIST,STATUS command 4-5
LIST,TRAP command 4-4
LIST,VALUES command 3-14
Loading programs 2-1

Load map 4-5

Local variables 2-4

MESSAGE command 5-2
MOVE command 3-20

Output control 4-6
Output types 4-7
Overflow errors C-1
Overlay programs 6-1
Overlay qualifier 6-2
OVERLAY trap 6-2

PAUSE command 5-7
PRINT command 2-3, 3-15
Program execution 1-3, 2-1
Program listings 2-3
Program reference 2-6
Program unit 2-4, 2-6
Programming errors 1-2
Programming style 1-3

QUIT command 2-3

READ command 5-12
Responses
To error messages 4-2, 5-5
In veto mode 5-19
To warning messages 4-3, 5-5

Index-1

Sample debug sessions
Illustrating some basic commands 2-3
Illustrating program debugging 3-20, 3-26
Illystrating command sequences 5-20, 5-21

SAVE,BREAKPOINT command 5-13

SAVE,GROUP command 5-13

SAVE,TRAP command 5-13

Segment loader 1-4

Sequence commands 5-1

Sequence editing 5-14

Sequence execution 5-4

Sequence suspension 5-7

Sequences of commands 5-1

SET,AUXILIARY command 4-8

SET,BREAKPOINT command 3-1

SET,GROUP command 5-2

SET,HOME command 2-9

SET,INTERPRET command 3-12

SET,OUTPUT command 4-7

SET,TRAP command 3-6

SET,VETO command 5-18

Shorthand notation 2-2, E-1

Statement label reference 2-6

STORE trap 3-6

SUSPEND command 5-16

Suspend/resume capability 5-16

Suspension of command sequence execution 5-7

Index-2

TRACEBACK command 4-6

Trap
Message 3-4
Scope definition 3-6
Types 3-4

Traps
Default 3-4
Defined 3-1, 3-4
Establishing 3-6
Listing 4-4
Removing 3-11
Saving 5-13
User-established 3-6

Use of breakpoints 3-1
Use of CID 1-2

Use of traps - 3-1, 3-4

Variables .
Altering contents of 3-16
Displaying 3-14
Referencing 2-5

veto mode 5-18

Warning processing 4-1

60482700 A

CUT ON THIS LINE

COMMENT SHEET _ .
@ CONTROL DATA
CORPORATION

TITLE: CYBER Interactive Debug Version 1 Guide
* For Users of FORTRAN Extended Version 4

PUBLICATION NO. 60482700 REVISION 4

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME:

-~ ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.
FOLD ON DOTTED LINES AND TAPE

TAPE | TAPE

FOLD FOLD

NO POSTAGE
NECESSARY
¥ MANED
: IN THE

- UNITED STATES

BUSINESS REPLY MAIL

FARST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

P.O. BOX 3492

Sunnyvale, California 94088-3492

CUT ALONG LINE

FOLD L0

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 565440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

i

CONTROL DATA CORPORATION

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	6-01
	6-02
	6-03
	6-04
	6-05
	A-01
	A-02
	A-03
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	Index-01
	Index-02
	replyA
	replyB
	xBack

